
KỸ THUẬT LẬP TRÌNH HỆ CƠ ĐIỆN TỬ

Programming Engineering in Mechatronics

1

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Giảng viên: TS. Nguyễn Thành Hùng

Đơn vị: Bộ môn Cơ điện tử, Viện Cơ khí

Email: hung.nguyenthanh@hust.edu.vn

thanhhung.hust@gmail.com

Hà Nội, 2020

mailto:hung.nguyenthanh@hust.edu.vn

1. Giới thiệu học phần

2. Giới thiệu về ngôn ngữ lập trình

2

Tổng quan về ngôn ngữ lập trình

❖ Kỹ thuật lập trình trong Cơ điện tử ME3213

❖ Khối lượng: 3(2-2-0-6)

➢ Giờ giảng lý thuyết: 45 tiết.

➢ Giờ bài tập, thảo luận: 15 tiết và bài tập lớn.

3

Giới thiệu học phần

❖Môn học cung cấp cho sinh viên những kiến thức tổng quát về lập trình và kỹ thuật

lập trình, đồng thời có các kĩ thuật cơ bản về ngôn ngữ lập trình C và C++ và phong

cách lập trình hướng đối tượng.

❖ Phương pháp thiết kế giao diện đồ họa người dùng (GUI: Graphical User Interface)

❖ Lập trình giao tiếp với các thiết bị ngoại vi như camera, vi điều khiển, PLC, …

❖ Sinh viên có khả năng triển khai các chương trình cụ thể để giải quyết các bài toán kĩ

thuật

❖ Sinh viên cũng có thể viết các chương trình chuyên dụng kết nối và điều khiển các

thiết bị ngoại vi.

4

Mục tiêu học phần

❖ Giới thiệu môn học và Tổng quan về ngôn ngữ lập trình

❖ Chương 1: Cơ sở của C++

❖ Chương 2: Lập trình cấu trúc trong C++

❖ Chương 3: Lập trình hướng đối tượng trong C++

❖ Chương 4: Lập trình giao diện đồ họa người dùng

❖ Chương 5: Lập trình giao diện phần cứng

5

Nội dung môn học

❖ Tài liệu học tập:

1. Sách giáo trình: Péter Tamás, Antal Huba, József Gräff: Mechatronic Systems

Programming in C++, BME MOGI, 2014

2. Bài giảng: Bài giảng Kỹ thuật lập trình trong Cơ điện tử (dạng slide bài giảng).

3. Công cụ: Visual Studio, QT, Dev C++, …

6

Sách và tài liệu tham khảo

Tài liệu tham khảo

1. Brain W.Kernighan, Dennis M.Ritchie: The C Programming Language, Second Edition,

Prentice Hall, 1988.

2. Bjarne Stroustrup: The C++ Programming Language, Third Edition, AT&T, 1997.

3. Stephan C. Dewhurst: C++ Gotchas: Avoiding Common Problems in Coding and Design,

Addison Wesley, 2002.

4. H. M. Deitel: C++ How to program, Fifth Edition, Prentice Hall, 2005.

5. Ivor Horton: Beginning Visual C++ 2005, Wiley Publishing, Inc, 2006.

6. Shaharuddin Salleh, Albert Y. Zomaya, Sakhinah Abu Bakar: Computing For Numerical

Methods Using Visual C++, John Wiley and Sons, Inc, 2008.

7

Sách và tài liệu tham khảo

❖ Điểm quá trình: hệ số 0,3

➢ Chuyên cần: tham gia đầy đủ các buổi học

➢ Bài tập: nộp đầy đủ các bài tập

➢ Kiểm tra giữa kỳ

❖ Điểm cuối kỳ: hệ số 0,7

➢ Hoàn thành bài tập lớn: Sinh viên cần viết một ứng dụng có thể kết nối với một thiết bị

phần cứng trong thời gian thực.

8

Đánh giá kết quả

1. Giới thiệu học phần

2. Giới thiệu về ngôn ngữ lập trình

9

Tổng quan về ngôn ngữ lập trình

10

Tổng quan về ngôn ngữ lập trình

1. Giới thiệu

• Máy tính, phần cứng, phần mềm

• Các mức của ngôn ngữ lập trình

• Ngôn ngữ bậc cao và C++

• Các thành phần cơ bản của chương trình C++

• Các kiểu dữ liệu cơ bản trong C++

• Các bước giải bài toán

• Các loại lỗi và xử lý lỗi

11

Tổng quan về ngôn ngữ lập trình

1.1. Máy tính:

• Máy tính (máy vi tính hay máy điện toán) là thiết bị hay hệ thống được dùng

để tính toán hay kiểm soát các hoạt động mà có thể biểu diễn dưới dạng số hay

quy luật lôgic.

1.2. Thiết bị phần cứng:

• Phần cứng (hardware) là các thành phần cụ thể của máy tính có thể chạm vào

được như màn hình, chuột, bàn phím, máy in, máy quét, vỏ máy tính, đơn vị vi

xử lý CPU, bo mạch chủ, các loại dây nối, loa, ổ mềm, ổ cứng, ổ CDROM, ...

12

Tổng quan về ngôn ngữ lập trình

• Phân loại:

- Thiết bị nhập (Input): Các bộ phận thu nhập dữ liệu hay mệnh lệnh như là

bàn phím, chuột...

- Thiết bị xuất (Output): Các bộ phận trả lời, phát tín hiệu, hay thực thi lệnh ra

bên ngoài như là màn hình, máy in, loa, ...

1.2. Thiết bị phần cứng:

13

Tổng quan về ngôn ngữ lập trình

1.3. Phần mềm máy tính:

• Phần mềm (Software) là một tập hợp những câu lệnh được viết bằng một hoặc

nhiều ngôn ngữ lập trình theo một trật tự xác định nhằm tự động thực hiện

một số chức năng hoặc giải quyết một bài toán nào đó.

• Ngôn ngữ: Ngôn ngữ trong máy tính là một công cụ để thực hiện việc giao

tiếp giữa người và máy.

• Lệnh: Lệnh là tập hợp một nhóm các ký hiệu của một ngôn ngữ nào đó nhằm

giúp cho người lập trình có thể xây dựng chương trình trên ngôn ngữ đó.

14

Tổng quan về ngôn ngữ lập trình

• Các mức của ngôn ngữ lập trình:

Hardware

Machine Language

Asembly Language

High level Language

Fortran-C-Pascal

15

Tổng quan về ngôn ngữ lập trình

• Ngôn ngữ được thiết kế và chuẩn hóa (từ khóa và cú pháp) để truyền các chỉ thị cho

máy tính.

• Dùng để tạo ra các chương trình điều khiển máy tính hoặc mô tả các thuật toán.

• Ngôn ngữ máy: là ngôn ngữ duy nhất máy trực tiếp hiểu

được và thực hiện. Dựa trên đại số Boolean với 2 giá trị mức

logic 0, 1. Chương trình viết bằng ngôn ngữ máy có thể nạp

trực tiếp vào bộ nhớ thi hành ngay.

16

Tổng quan về ngôn ngữ lập trình

8

• Hợp ngữ: Là ngôn ngữ rất gần với ngôn ngữ máy, nhưng

mã lệnh được thay bằng tên viết tắt của thao tác (Tiếng

Anh). Hợp ngữ cần chương trình

• Ngôn ngữ bậc cao: Là ngôn ngữ gần với ngôn ngữ tự

nhiên. Chương trình viết bằng ngôn ngữ bậc cao không

phụ thuộc máy, muốn thi hành được cần chuyển sang

ngôn ngữ máy (trình biên dịch)

17

Tổng quan về ngôn ngữ lập trình

• Giao tiếp người - máy: Các phần mềm thiết kế, chương trình gia công, điều khiển

được mã hóa thông qua phần mềm biên dịch tương ứng với máy, để máy có thể hiểu

và thực hiện.

• Ví dụ:

Trình biên dịch

18

Tổng quan về ngôn ngữ lập trình

Answer

19

Tổng quan về ngôn ngữ lập trình

• Thông dịch (Interpreter): Thông dịch được thực hiện theo các bước sau

20

Tổng quan về ngôn ngữ lập trình

• Biên dịch (Complier): Thực hiện các bước sau:

• Biên dịch: Kiểm tra và dịch toàn bộ, chuyển thành ngôn ngữ máy và có thể lưu trữ

lại trong khi thông dịch là sử dụng trực tiếp cho máy

21

Tổng quan về ngôn ngữ lập trình

1.4. Thành phần cơ bản của ngôn ngữ lập trình:

22

Tổng quan về ngôn ngữ lập trình

23

Tổng quan về ngôn ngữ lập trình

24

Tổng quan về ngôn ngữ lập trình

25

Tổng quan về ngôn ngữ lập trình

1.5. Phương pháp lập trình

• Lập trình tuyến tính (tuần tự từ trên xuống)

- Chương trình chỉ gồm hàm chính và dữ liệu

Main function

Data
+

26

Tổng quan về ngôn ngữ lập trình

27

Tổng quan về ngôn ngữ lập trình

• Lập trình cấu trúc

- Chương trình chỉ gồm hàm chính (main function) và hàm con (sub-functions)

28

Tổng quan về ngôn ngữ lập trình

Main function

Function 1 Function 2 Function n…

- Hàm con sau khi hoàn tất khai báo, có thể truy xuất, và gọi ra nhiều lần (tránh việc

trùng lặp mã nguồn)

- Trao đổi dữ liệu giữa các hàm nhờ các tham số

•

29

Tổng quan về ngôn ngữ lập trình

• Lập trình module

- Các hàm được xây dựng và đóng gói trong các thư viện độc lập - module (dll, lib)

- Các chương trình khác nhau có thể đồng thời cùng truy xuất được hàm trong thư

viện

- Ẩn và đóng gói dữ liệu cũng như triển khai bên trong

Main function

Module 1

Data
Function 1,…n

Module 2

Data
Function 1,…n

Module n

Data
Function 1,…n

…

30

Tổng quan về ngôn ngữ lập trình

•

31

Tổng quan về ngôn ngữ lập trình

• Lập trình hướng đối tượng

32

Tổng quan về ngôn ngữ lập trình

Object 1
Data

Object 2
Data

Object 3
Data

Object n
Data

…

- Dữ liệu được trừu tượng hóa và triển khai thành lớp.

- Sử dụng lớp để tạo ra các đối tượng.

- Các đối tượng sử dụng thông điệp để trao đổi với nhau.

33

Tổng quan về ngôn ngữ lập trình

• Lập trình hướng dịch vụ (SOA - Service Oriented Architecture)

- Dịch vụ được cung cấp cho các ứng dụng khác

qua giao thức truyền thông, chủ yếu là qua mạng.

- Quy tắc hướng dịch vụ là độc lập với bất cứ nhà

cung cấp, sản phẩm hay công nghệ.

KỸ THUẬT LẬP TRÌNH HỆ CƠ ĐIỆN TỬ

Programming for Mechatronic Systems

1

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Giảng viên: TS. Nguyễn Thành Hùng

Đơn vị: Bộ môn Cơ điện tử, Viện Cơ khí

Hà Nội, 2020

2

Chapter I. Basics and data management of C++

❖ 1. Creation of C++ programs

❖ 2. Basic data types, variables and constants

❖ 3. Basic operations and expressions

❖ 4. Control program structures

❖ 5. Exception handling

❖ 6. Pointers, references and dynamic memory

management

❖ 7. Arrays and strings

❖ 8. User-defined data types

3

1. Creation of C++ programs

❖ Some important rules

▪ The basic elements of the program: the characters of the 7 bit

ASCII code table

▪ Character and text constants, as well as remarks may contain

characters of any coding

4

❖ Some important rules

▪ C++ compiler differentiates small and capital letters in the words

(names) used in the program.

▪ Certain (English) words cannot be used as own names since

these are keywords of the compiler.

▪ In case of creating own names please note that they have to start

with a letter (or underscore sign), and should contain letters,

numbers or underscore signs in their other positions.

1. Creation of C++ programs

5

❖ The first C++ program in two versions
// Circle1.cpp
#include "cstdio"
#include "cmath"
using namespace std;

int main()
{

const double pi = 3.14159265359;
double radius, area, perimeter;
// Reading radius
printf("Radius = ");
scanf("%lf", &radius);
// Calculations
perimeter = 2 * radius*pi;
area = pow(radius, 2)*pi;
printf("Perimeter: %7.3f\n",
perimeter);
printf("Area: %7.3f\n", area);
// Waiting for pressing Enter
getchar();
getchar();
return 0;

}

// Circle2.cpp
#include "iostream"
#include "cmath"
using namespace std;

int main()
{

const double pi = 3.14159265359;
// Reading radius
double radius;
cout << "Radius = ";
cin >> radius;
// Calculations
double perimeter = 2 * radius*pi;
double area = pow(radius, 2)*pi;
cout << "Perimeter: " << perimeter <<
endl;
cout << "Area: " << area << endl;
// Waiting for pressing Enter
cin.get();
cin.get();
return 0;

}

C C++

1. Creation of C++ programs

6

❖ Compilation and running of C++ programs

Steps of C++ program compilation

1. Creation of C++ programs

7

❖ Structure of C++ programs

// C++ preprocessor directives
#include <iostream>
#define MAX 2012

// in order to reach the standard library names
using namespace std;

// global declarations and definitions
double fv1(int, long); // function prototype
const double pi = 3.14159265; // definition

// the main() function
int main()
{
/* local declarations and definitions
statements */
return 0; // exit the program
}

// function definition
double fv1(int a, long b)
{
/* local declarations and definitions
statements */
return a + b; // return from the functions
}

1. Creation of C++ programs

8

❖ Structure of C++ programs

C++ object-oriented (OO) approach

/// Circle3.cpp
#include "iostream"
#include "cmath"
using namespace std;

// Class definition
class Circle
{
double radius;
static const double pi;
public:
Circle(double r) { radius = r; }
double Perimeter() { return 2 * radius*pi; }
double Area() { return pow(radius, 2)*pi; }
};
const double Circle::pi = 3.14159265359;

int main()
{
// Reading radius
double radius;
cout << "Radius = ";
cin >> radius;
// Creation and usage of object Circle
Circle circle(radius);
cout << "Perimeter: " <<
circle.Perimeter() << endl;
cout << "Area: " << circle.Area() <<
endl;
// Waiting for pressing Enter
cin.get();
cin.get();
return 0;
}

1. Creation of C++ programs

❖ 1. Creation of C++ programs

❖ 2. Basic data types, variables and constants

❖ 3. Basic operations and expressions

❖ 4. Control program structures

❖ 5. Exception handling

❖ 6. Pointers, references and dynamic memory

management

❖ 7. Arrays and strings

❖ 8. User-defined data types

9

Chapter I. Basics and data management of C++

10

2. Basic data types, variables and constants

Classification of C++ data types

❖ Classification of C++ data types

11

2. Basic data types, variables and constants

❖ Type modifiers

▪ The signed/unsigned modifier pair: negative numbers or not.

▪ The short/long pair: size of the storage can be fixed to 16 or 32
bits.

▪ The long long modifier: 64bits

▪ Type modifiers can also be used as type definitions alone.

12

2. Basic data types, variables and constants

❖ Type modifiers

char signed char

short int short signed short int signed short

int signed signed int

long int long signed long int signed long

long long int long long signed long long int signed long long

unsigned char

unsigned short int unsigned short

unsigned int unsigned

unsigned long int unsigned long

unsigned long long
int

unsigned long long

Elements in each row designate the same data type.

13

2. Basic data types, variables and constants

❖ Type modifiers

Data type Range of values Size
(bytes)

Precision
(digits)

bool false, true 1

char -128..127 1

signed char -128..127 1

unsigned
char

0..255 1

wchar_t 0..65535 2

int -
2147483648..214748

3647

4

unsigned int 0..4294967295 4

short -32768..32767 2

unsigned
short

0..65535 2

Data type Range of values Size
(bytes)

Precision
(digits)

long -
2147483648..21474836

47

4

unsigned long 0..4294967295 4

long long -
9223372036854775808

..
9223372036854775807

8

unsigned long
long

0..18446744073709551
615

8

float 3.4E-38..3.8E+38 4 6

double 1.7E-308..1.7E+308 8 15

long double 3.4E-4932..3.4E+4932 10 19

14

2. Basic data types, variables and constants

❖ Defining variables

▪ Generalized forms

▪ the 〈 〉 signs indicate optional elements while the three points
show that a definition element can be repeated.

▪ The storage classes – auto, register, static and extern – of C++
determine the lifetime and visibility of variables.

〈storage class〉 〈type qualifier〉 〈type modifier ... 〉 typevariable name 〈= initial value〉 〈, … 〉;

〈storage class〉 〈type qualifier〉 〈type modifier ... 〉 typevariable name 〈(initial value)〉 〈, … 〉;

15

2. Basic data types, variables and constants

❖ Defining variables

▪ With type qualifiers further information can be assigned to
variables.

➢ Variables with const keyword cannot be modified (they are read-only, i.e.
constants).

➢ The volatile type qualifier indicates that the value of the variable can be
modified by a code independent of our program (e.g. by another running
process or thread).

int const
const double
volatile char
float volatile
const volatile
bool

16

2. Basic data types, variables and constants

❖ Defining variables

▪ Initial values of variables

17

2. Basic data types, variables and constants

❖ Basic data types

▪ Character types

➢ Example character C: ’C’ 67 0103 0x43

18

2. Basic data types, variables and constants

19

2. Basic data types, variables and constants

❖ Basic data types

▪ Character types

➢ unsigned char type: the 8-bit ANSI code table or a one-byte integer value

➢ the two-byte wchar_t type: a character of the Unicode table

➢ Constant character values should be preceded by capital letter L.

20

2. Basic data types, variables and constants

❖ Basic data types

▪ Logical Boolean type

➢ Bool type variables can have two values: logical false is 0, while logical true is
1.

21

2. Basic data types, variables and constants

❖ Basic data types

▪ Integer types

➢ The type of constant integer values can be provided by the U and L postfixes. U
means unsigned, L means long:

2012 int

2012U unsigned int

2012L long int

2012UL unsigned long int

2012LL long long int

2012ULL unsigned long long int

22

2. Basic data types, variables and constants

❖ Basic data types

▪ Integer types

➢ setw (): set the width of the field to be used in printing operations

➢ left: aligned to the (left)

➢ right: aligned to the right (right), which is the default value.

23

2. Basic data types, variables and constants

❖ Basic data types

▪ Floating point types

➢ floating point types: float, double, long double (Visual C++ treats the long
double type as double.)

24

2. Basic data types, variables and constants

❖ Basic data types

▪ Floating point types

➢ There is only one value the value of which is surely exact: 0.

➢ Floating point constant values are double type by default. Postfix F designates
a float type variable, whereas L designates a long double variable: 12.3F,
1.2345E-10L.

➢ setw() - the field width, - setprecision() - the number of digits after the decimal
point, fixed - decimal representation, scientific - scientific representation.

25

2. Basic data types, variables and constants

❖ Basic data types

▪ Floating point types

26

2. Basic data types, variables and constants

❖ Basic data types

▪ Floating point types

▪ A type with a smaller value range can be converted into a type with a wider
range without data loss.

▪ However, in the reverse direction, the conversion generally provokes data loss.

27

2. Basic data types, variables and constants

❖ Basic data types

▪ enum type

➢ The readability of our programs is much better if these values are replaced by
names.

enum 〈type identifier〉 { enumeration };

➢ If type identifier is not given, the type is not created only the constants.

enum workdays {Monday, Tuesday, Wednesday, Thursday, Friday};

➢ By default, the value of the first element (Monday) is 0, that of the next one
(Tuesday) is 1, and so on (the value of Friday is 4).

28

2. Basic data types, variables and constants

❖ Basic data types

▪ enum type

➢ In enumerations, we can directly assign values to their elements.

enum consolecolours {black,blue,green,red=4,yellow=14,white};

➢ In the enumeration named consolecolours the value of white is 15.

29

2. Basic data types, variables and constants

❖ Basic data types

▪ sizeof operation

➢ the size of any type or any variable and expression type in bytes.

sizeof(typename)

sizeof(variable/expression)

30

2. Basic data types, variables and constants

❖ Creation of alias type names

▪ volatile unsigned short int sign;

→ typedef volatile unsigned short int uint16;

uint16 sign;

▪ typedef can also be useful in case of enumerations:

typedef enum {falsevalue = -1, unknown, truevalue} bool3;

bool3 start = unknown;

▪ It is particularly useful to use typedef in case of complex types,
where type definition is not always simple.

typedef unsigned char byte, uint8;

typedef unsigned short word, uint16;

typedef long long int int64;

31

2. Basic data types, variables and constants

❖ Constants in language C++

▪ Constants (macros) #define should be avoided in C++ language.

▪ The big advantage and disadvantage of this solution is untypedness.

32

2. Basic data types, variables and constants

❖ Constants in language C++

▪ Constant solutions supported by C++ language are based on const
type qualifiers and the enum type.

33

2. Basic data types, variables and constants

❖ Constants in language C++

▪ The third possibility is to use an enum type, which can only be applied
in case of integer (int) type constants.

▪ enum and const constants are real constants since they are not stored
in the memory by compilers. While #define constants have their effects
from the place of their definition until the end of the file, enum and
const constants observe the traditional C++ visibility and lifetime rules.

34

Chapter I. Basics and data management of C++

❖ 1. Creation of C++ programs

❖ 2. Basic data types, variables and constants

❖ 3. Basic operations and expressions

❖ 4. Control program structures

❖ 5. Exception handling

❖ 6. Pointers, references and dynamic memory

management

❖ 7. Arrays and strings

❖ 8. User-defined data types

35

3. Basic operations and expressions

❖ Classification of operators based on the number of operands

▪ In case of operators with one operand (unary) the general form of
the expression is:

op operand or operand op

prefix form postfix form

Examples:

-n sign change,

n++ incrementing the value of n (postfix),

--n decrementing the value of n (prefix),

double(n) transformation of the value of n to real.

36

3. Basic operations and expressions

❖ Classification of operators based on the number of operands

▪ Most operations have two operands – these are called two
operand (binary) operators:

operand1 op operand2

Examples:

n & 0xFF obtaining the low byte of n,

n + 2 calculation of n + 2,

n << 3 shift the bits of n to the left with 3 positions,

n += 5 increasing the value of n with 5.

▪ The C++ language has one three operand operation, this is the
conditional operator:

operand1 ? operand2 : operand3

37

3. Basic operations and expressions

❖ Precedence and grouping rules

▪ Rule of precedence: If different precedence operations are found
in one expression, then always the part that contains an operator
of higher precedence is evaluated first.

Example: The evaluation sequence of expressions a+b*c-d*e

The steps of processing expression (a+b)*(c-d)*e are:

38

3. Basic operations and expressions

❖ Precedence and grouping rules

▪ Rule of associativity: Associativity determines whether the
operation of the same precedence level is carried out form left to
right or from right to left.

Example: In the group of assignment statements evaluation is carried out from

the right to the left

a = b = c = 0; identical with a = (b = (c = 0));

In case operations of the same precedence level can be found in

one arithmetic expression, the rule from left to right is applied.

39

3. Basic operations and expressions

❖ Precedence and grouping rules

Precedence Operator Name or meaning Associativity

1. :: scope resolution none

2. () function call, member initialization from left to right

[] array indexing

-> indirect member selection (pointer)

. direct member selection (object)

++ (postfix) increment

-- (postfix) decrement

type () type-cast (conversion)

dynamic_cast
checked type-cast at runtime

(conversion)

static_cast
checked type-cast during compilation

time (conversion)

reinterpret_cast unchecked type-cast (conversion)

const_cast constant type-cast (conversion)

typeid type identification

40

3. Basic operations and expressions

❖ Precedence and grouping rules

3. ! logical negation (NOT) from right to left

~ bitwise negation

+ + sign (numbers)

- - sign (numbers)

++ (prefix) increment

-- (prefix) decrement

& address-of operator

* indirection operator

(type) type-cast (conversion)

sizeof size of an object/type in bytes

new allocating dynamic memory space

delete deallocating dynamic memory space

4. .* direct reference to a class member from left to right

->*
indirect reference to a member of the object the

pointer points to

41

3. Basic operations and expressions

❖ Precedence and grouping rules

5. * multiplication from left to right

/ division

% modulo

6. + addition from left to right

– subtraction

7. << bitwise left shift from left to right

>> bitwise right shift

8. < less than from left to right

<= less than or equals

> greater than

>= greater than or equals

9. == equal to from left to right

!= not equal to

42

3. Basic operations and expressions

❖ Precedence and grouping rules

10. & bitwise AND from left to right

11. | bitwise inclusive OR from left to right

12. ^ bitwise exclusive OR (XOR) from left to right

13. && logical AND from left to right

14. || logical OR from left to right

15. expr ? expr : expr conditional expression from right to left

43

3. Basic operations and expressions

❖ Precedence and grouping rules
16. = simple value assignment from right to left

*= multiplication assignment

/= division assignment

%= modulo assignment

+= addition assignment

-= subtraction assignment

<<= bitwise left shift assignment

>>= bitwise right shift t assignment

&= bitwise AND assignment

^= bitwise XOR assignment

|= bitwise OR assignment

17. throw expr throwing an expression from right to left

18. expr , expr operation sequence (comma operator) from left to right

44

3. Basic operations and expressions

❖ Mathematical expressions

▪ Arithmetical operators

• the operator of modulo (%), Addition (+), subtraction (-),
multiplication (*) and division (/).

Example: 29 / 7 = 4; 29 % 7 = 1

▪ Mathematical functions

Usage Type Function Include file

calculation of absolute value real fabs(real x) cmath

calculation of absolute value integer abs(integer x) cstdlib

cosine of an angle (in radians) real cos(real x) cmath

sine of an angle (in radians) real sin(real x) cmath

tangent of an angle (in radians) real tan(real x) cmath

45

3. Basic operations and expressions

❖ Mathematical expressions

▪ Mathematical functions

Usage Type Function Include file

the inverse cosine of the argument (in radians) real acos(real x) cmath

the inverse sine of the argument (in radians) real asin(real x) cmath

the inverse tangent of the argument (in radians) real atan(real x) cmath

the inverse tangent of y/x (in radians) real atan(real x, real y) cmath

natural logarithm real log(real x) cmath

base 10 logarithm real log10(real x) cmath

ex real exp(real x) cmath

power (xy) real pow(real x, real y) cmath

square root real sqrt(real x) cmath

random number between 0 and RAND_MAX real int rand(void) cstdlib

the value of π real 4.0*atan(1.0) cmath

Where the type real designates one of the following types: float, double or long

double. The type integer designates one of the int or long types

46

3. Basic operations and expressions

❖ Mathematical expressions

▪ Mathematical functions

47

3. Basic operations and expressions

❖ Assignment

▪ Left value and right value

• The value of the expression on the left side of the equation sign is
called left value (lvalue), while the expression on the right side is
called right value (rvalue).

▪ Side effects in evaluation

• During processing certain operations – assignment, function call
and increment, decrement (++, --), the value of operands may
also change besides the value of the expression. This
phenomenon is called side effect.

variable = value;

48

3. Basic operations and expressions

❖ Assignment

▪ Assignment operators

a = 4;

b = (a+10)*4;
b = ((a = 4) + 10)* 4;

a = 10;

b = 10;
a = b = 10;

a = a + 2; a += 2;

expression1 = expression 1 op
expression 2

expression 1 op= expression 2

The compound assignment usually results in a faster code, and

therefore the source program can be interpreted easier.

49

3. Basic operations and expressions

❖ Increment and decrement operations

▪ ++ (increment), -- (decrement)

▪ The operators can be used only with left value operands, however
both prefix and postfix forms can be applied:

int a;
// prefix forms:

++a; --a;
// postfix forms:

a++; a--;

50

3. Basic operations and expressions

❖ Increment and decrement operations

int n, m = 5; m = ++n; // m ⇒ 6, n ⇒ 6

double x, y = 5.0; x = y++; // x ⇒ 5.0, y ⇒ 6.0

int a = 2, b = 3, c; c = ++a + b--; // a will be 3, b 2 and c 6

<==> a++, c=a+b, b--; <==> a++; c=a+b; b--;

a = a + 1; a += 1;
a = a - 1; a -= 1;

++a; or a++;
--a; or a--;

51

3. Basic operations and expressions

❖ Phrasing of conditions

▪ Relational and equality operations

• Two operand, relational operators are available for carrying out
comparisons, according to the table below:

Mathematical form C++ expression Meaning

a < b a < b a is less than b

a ≤ b a <= b a is less than or equal to b

a > b a > b a is greater than b

a ≥ b a >= b a is greater than or equal to b

a = b a == b a is equal to b

a ≠ b a != b a is not equal to b

All C++ expressions above are int type. The value of expressions is true (1) if the examined

relation is true and false (0) if not.

52

3. Basic operations and expressions

❖ Phrasing of conditions

▪ Relational and equality operations

• Let’s take the example of some true expressions that contain
different type operands:

53

3. Basic operations and expressions

❖ Phrasing of conditions

▪ Relational and equality operations

• It is to be noted that due to the computational and representation
inaccuracy the identity of two floating point variables cannot be
checked with operator ==.

54

3. Basic operations and expressions

❖ Phrasing of conditions

▪ Relational and equality operations

• Frequent program error is to confuse the operations of
assignment (=) and identity testing (==).

• Comparison of a variable with a constant can be made safer if the
left side operand is a constant, since the compiler expects a left
value during assignment in this case:

2004 == dt instead of dt == 2004

55

3. Basic operations and expressions

❖ Phrasing of conditions

▪ Logical operations

• The operation of logical operators can be described with a so
called truth table:

56

3. Basic operations and expressions

❖ Phrasing of conditions

▪ Logical operations

• In C++ programs numerical variable ok is frequently used in
expressions:

!ok instead of ok == 0

ok instead of ok != 0

• Right side expressions are recommended to be used mainly
with bool type variable ok.

57

3. Basic operations and expressions

❖ Phrasing of conditions

▪ Conditional operator

• Conditional operator (?:) has three operands:

condition ? true_expression : false_expression

• If the condition is true, the value of true_expression provides the value

of the conditional expression, otherwise the false_expression after the

colon (:).

(n > 0) ? 3.141534 : 54321L;

ch = n >= 0 && n <= 9 ? '0' + n : 'A' + n - 10;

c = 1 > 2 ? 4 : 7 * 2 < 3 ? 4 : 7 ; // 7 should be avoided

c = (1 > 2 ? 4 : (7 * 2)) < 3 ? 4 : 7 ; // 7 should be avoided

c = (1 > 2 ? 4 : 7) * (2 < 3 ? 4 : 7) ; //28

58

3. Basic operations and expressions

❖ Bit operations

• The C++ language contains six operators with the help of which

different bitwise operations can be carried out on signed and unsigned
integer data.

▪ Bitwise logical operations

• The bitwise logical operations make it possible to test, delete or set bits:

Operator Operation

~ Unary complement, bitwise negation

& bitwise AND

| bitwise OR

^ bitwise exclusive OR

59

3. Basic operations and expressions

❖ Bit operations

▪ Bitwise logical operations

a b a & b a | b a ^ b ~a

0 0 0 0 0 1

0 1 0 1 1 1

1 0 0 1 1 0

1 1 1 1 0 0

60

3. Basic operations and expressions

❖ Bit operations

▪ Bitwise logical operations

unsigned short int x = 2525; // 0x09dd

Operation Mask C++ instruction Result

Bit setting
0010 0000 0001

0000
x = x | 0x2010; 0x29dd

Bit deletion
1101 1111 1110

1111
x = x & 0xdfef; 0x09cd

Bit negation

(switching)

0010 0000 0001

0000

x = x ^ 0x2010;

x = x ^ 0x2010;

0x29cd (10701)

0x09dd (2525)

Negation of all

bits

1111 1111 1111

1111
x = x ^ 0xFFFF; 0xf622

Negation of all

bits
x = ~x; 0xf622

61

3. Basic operations and expressions

❖ Bit operations

▪ Bit shift operations

• Shift can be carried out either to the left (<<) or to the right (>>). During

shifting the bits of the left side operand move to the left (right) as many

times as the value of the right side operand shows.

• In case of shifting to the left bit 0 is placed into the free bit positions,

while the exiting bits are lost.

• Shift to the right takes into consideration whether the number is signed

or not. In case of unsigned types bit 0 enters from the left, while in case

of signed numbers bit 1 comes in. This means that bit shift to the right
keeps the sign.

62

3. Basic operations and expressions

❖ Bit operations

▪ Bit shift operations

• If the bits of an integer number is shifted to the left by n steps, the result

is the multiplication of that number with 2n.

• Shift to the right by m bits means integer division by 2m.

63

3. Basic operations and expressions

❖ Bit operations

▪ Bit operations in compound assignment

Operator Relation sign Usage Operation

Assignmnet by shift

left
<<= x <<= y

shift of bits of x to

the left with y bits,

Assignmnet by shift

right
>>= x >>= y

shift of bits of x to

the right with y

bits,

Assignmnet by

bitwise OR
|= x |= y

new value of x: x |

y,

Assignmnet by

bitwise AND
&= x &= y

new value of x: x

& y,

Assignmnet by

bitwise exclusive OR
^= x ^= y

new value of x: x ^

y,

64

3. Basic operations and expressions

❖ Bit operations

▪ Bit operations in compound assignment

65

3. Basic operations and expressions

❖ Comma operator

• x = (y = 4 , y + 3); → y = 4 → y = 4+3=7 → x = 7.

• Comma operator is frequently used when setting different initial values

for variables in one single statement (expression):

x = 2, y = 7, z = 1.2345 ;

• Comma operator should be used also when the values of two variables

should be changed within one statement (using a third variable):

c = a, a = b, b = c;

66

3. Basic operations and expressions

❖ Type conversions

▪ Implicit type conversions

• char, wchar_t, short, bool, enum type data are automatically

converted to int (unsigned int) type → “integer conversion” (integral

promotion).

• During type conversion the “smaller” type operand is converted to the

“larger” type → “common arithmetical conversions”.

int < unsigned < long < unsigned long < long long < unsigned long

long < float < double < long double

67

3. Basic operations and expressions

❖ Type conversions

▪ Explicit type conversions

• The (static) type conversions below are all carried out during the

compilation of the C++ program. A possible grouping of type

conversions:

type conversion (C/C++) (type name) expression (long)p

function-like form type name (expression) int(a)

checked type

conversions

static_cast< type

name >(expression)
static_cast<double>(x)

68

3. Basic operations and expressions

❖ Type conversions

▪ Explicit type conversions

• In case of writing any expression implicit and the maybe necessary

explicit conversions have to be considered always.

69

Chapter I. Basics and data management of C++

❖ 1. Creation of C++ programs

❖ 2. Basic data types, variables and constants

❖ 3. Basic operations and expressions

❖ 4. Control program structures

❖ 5. Exception handling

❖ 6. Pointers, references and dynamic memory

management

❖ 7. Arrays and strings

❖ 8. User-defined data types

70

4. Control program structures

71

4. Control program structures

❖ Empty statements and statement blocks

• Empty statements consist only of a semicolon (;). They should be used

if no activity has to be performed logically.

• Curly brace brackets ({ and }) enclose declarations and statements that

make up a coherent unit together within a compound statement or

block.

72

4. Control program structures

❖ Empty statements and statement blocks

To be used in the following three cases:

• when more statements forming together a logical unit should be treated

as one (in these cases, blocks only contain statements in general),

• in the body of functions,

• to localize the validity of definitions and declarations.

73

4. Control program structures

❖ Selective structures

▪ if statements:

• In the case of an if statement, the execution of an activity (statement)

depends on the value of an expression (condition). if statements have

three forms:

One-way branch

• In the following form of if, the statement is only executed if the value

of condition is not zero (i.e. true).

if (condition)

statement

74

4. Control program structures

❖ Selective structures

▪ if statements:

One-way branch

Functioning of a simple if statement

75

4. Control program structures

❖ Selective structures

▪ if statements:

One-way branch

76

4. Control program structures

❖ Selective structures

▪ if statements:

Two-way branches

• In the complete version of an if statement, an activity can be provided

(statement2) when the value of the condition is zero (i.e. false).

if (condition)

statement1

else

statement2

77

4. Control program structures

❖ Selective structures

▪ if statements:

Two-way branches

Logical representation of if-else structures

78

4. Control program structures

❖ Selective structures

▪ if statements:

Two-way branches

79

4. Control program structures

❖ Selective structures

▪ if statements:

Two-way branches

• if statements can be nested in one another.

• Compilers connect else branches to the closest preceding if statement.

80

4. Control program structures

❖ Selective structures

▪ if statements:

Two-way branches

best

81

4. Control program structures

❖ Selective structures

▪ if statements:

Multi-way branches

• A frequent case of nested if statements is to use further if statements

in else branches.

if (condition1)

statement1

else if (condition2)

statement2

else if (condition3)

statement3

else

statement4

82

4. Control program structures

❖ Selective structures

▪ if statements:

Multi-way branches

Logical representation of multi-way branches

83

4. Control program structures

❖ Selective structures

▪ if statements:

Multi-way branches

84

4. Control program structures

❖ Selective structures

▪ if statements:

Multi-way branches

85

4. Control program structures

❖ Selective structures

▪ if statements:

Multi-way branches

86

4. Control program structures

❖ Selective structures

▪ switch statements:

• In fact, switch statements are statement blocks that we can enter into

depending on the value of a given integer expression.

switch (expression)

{

case constant_expression1 :

statements1

case constant_expression2 :

statements2

case constant_expression3 :

statements3

default :

statements4

}

87

4. Control program structures

❖ Selective structures

▪ switch statements:

88

4. Control program structures

❖ Selective structures

▪ switch statements:

• In most cases switch statements are used, similarly to else-if

structures, to realize multi-way branches.

• For that purpose, all statement blocks that correspond to a case have to

end with a jump statement (break, goto or return).

• break statements transfer control to the statement immediately following

the switch block, goto to the statement with the specified label within

the function block and finally return exits the function.

89

4. Control program structures

❖ Selective structures

▪ switch statements:

90

4. Control program structures

❖ Selective structures

▪ switch statements:

91

4. Control program structures

❖ Iteration structures (loops)

▪ while loops:

• while loops repeat statements belonging to them (the body of the

loop), while the value of the examined condition is true (not 0).

Evaluation of the condition always precedes the execution of the

statement.

while (condition)

statement

92

4. Control program structures

❖ Iteration structures (loops)

▪ while loops:

93

4. Control program structures

❖ Iteration structures (loops)

▪ while loops:

94

4. Control program structures

❖ Iteration structures (loops)

▪ for loops:

• In the general form of for statements, the role of each expression is also

mentioned:

for (initialization; condition; increment)

statement

• In reality, for statements are the specialized versions of while

statements, so the above for loop can perfectly be transformed into

a while loop:

initialization;

while (condition) {

statement;

increment;

}

95

4. Control program structures

❖ Iteration structures (loops)

▪ for loops:

Logical representation of for loops

96

4. Control program structures

❖ Iteration structures (loops)

▪ for loops:

97

4. Control program structures

❖ Iteration structures (loops)

▪ for loops:

*

* *

* * *

* * * *

* * * * *

* * * * * *

* * * * * * *

* * * * * * * *

* * * * * * * * *

* * * * * * * * * *

* * * * * * * * * * *

98

4. Control program structures

❖ Iteration structures (loops)

▪ do-while loops:

• In do-while loops, evaluation of the condition takes place after the first

execution of the body of the loop, so the loop body is always executed at

least once:

do

statement

while (condition);

99

4. Control program structures

❖ Iteration structures (loops)

▪ do-while loops:

Logical representation of do-while loops

100

4. Control program structures

❖ Iteration structures (loops)

▪ do-while loops:

101

4. Control program structures

❖ Iteration structures (loops)

▪ do-while loops:

102

4. Control program structures

❖ Iteration structures (loops)

▪ do-while loops:

103

4. Control program structures

❖ Iteration structures (loops)

▪ break statements in loops:

• The break statement interrupts the execution of the nearest while,

for and do-while statements and control passes to the first statement

following the interrupted loop:

104

4. Control program structures

❖ Iteration structures (loops)

▪ break statements in loops:

105

4. Control program structures

❖ Iteration structures (loops)

▪ break statements in loops:

106

4. Control program structures

❖ Iteration structures (loops)

▪ continue statements:

• continue statements start the next iteration of while, for and do-

while loops. In the body of these loops, the statements placed

after continue are not executed.

• In the case of while and do-while loops, the next iteration begins with

evaluating again the condition. However, in for loops, the processing of

the condition is preceded by the increment.

107

4. Control program structures

❖ Iteration structures (loops)

▪ continue statements:

108

Chapter I. Basics and data management of C++

❖ 1. Creation of C++ programs

❖ 2. Basic data types, variables and constants

❖ 3. Basic operations and expressions

❖ 4. Control program structures

❖ 5. Exception handling

❖ 6. Pointers, references and dynamic memory

management

❖ 7. Arrays and strings

❖ 8. User-defined data types

109

5. Exception handling

• An anomalous state or event that hinders the normal flow of the

execution of a program is called an exception.

• Three elements that are needed for the type-oriented exception handling

of C++ are the following:

➢ selecting the code part under exception inspection (try-block),

➢ transferring exceptions (throw),

➢ catching and handling exceptions (catch).

110

5. Exception handling

❖ The try – catch program structure

❖ Provoking exceptions - the throw statement

❖ Filtering exceptions

❖ Nested exceptions

111

5. Exception handling

❖ The try – catch program structure

• In general, a try-catch program structure contains only one try block

and any number of catch blocks:

112

5. Exception handling

❖ The try – catch program structure

113

5. Exception handling

❖ Provoking exceptions - the throw statement

• Exceptions have to be handled locally within the given part of a code

with the keywords try, throw and catch. Exception handling only takes

place in case the code in the catch block (and the code called from

there) is executed. From the selected code portion, a throw statement

throw expression;

passes control to the handler that corresponds to the type of the

expression, which should be provided after the keyword catch.

• Exception classes make it possible to pass "smart" objects as

exceptions instead of simple values.

114

5. Exception handling

❖ Provoking exceptions - the throw statement

Exception classes Header file

exception <exception>

bad_alloc <new>

bad_cast <typeinfo>

bad_typeid <typeinfo>

logic_failure <stdexcept>

domain_error <stdexcept>

invalid_argument <stdexcept>

length_error <stdexcept>

out_of_range <stdexcept>

runtime_error <stdexcept>

range_error <stdexcept>

overflow_error <stdexcept>

underflow_error <stdexcept>

ios_base::failure <ios>

bad_exception <exception>

115

5. Exception handling

❖ Provoking exceptions - the throw statement

116

5. Exception handling

❖ Filtering exceptions

• Functions in C++ have an important role in exception handling.

• In the header of a function definition, the keyword throw can be used in

a specific way, so the type of the exception to be thrown to the handler

can also be defined. By default, all exceptions are transferred.

117

5. Exception handling

❖ Filtering exceptions

118

5. Exception handling

❖ Nested exceptions

• A try-catch exception handling structure can be placed within another

try-block, either directly or indirectly (i.e. in the function called from that

try-block).

119

5. Exception handling

❖ Nested exceptions

120

Chapter I. Basics and data management of C++

❖ 1. Creation of C++ programs

❖ 2. Basic data types, variables and constants

❖ 3. Basic operations and expressions

❖ 4. Control program structures

❖ 5. Exception handling

❖ 6. Pointers, references and dynamic memory

management

❖ 7. Arrays and strings

❖ 8. User-defined data types

121

• Based on the storage class, compiler places

global (extern) data grouped together on a

memory place which is always accessible while

the program is running.

• Local (auto) data are stored in a stack memory

block when the corresponding functions are

entered into and they are deleted when these

functions are exited.

C++ program memory usage

6. Pointers, references and dynamic memory management

122

• However, there is a space named heap, where programmers can place

variables and delete those that are not needed anymore.

• They can be referenced by variables storing their address (pointers).

C++ has a couple of operators that make dynamic memory management

possible: *, &, new, delete.

• There are many domains where pointers are used in C/C++ programs:

function parameter passing, linked data structure management, etc.

6. Pointers, references and dynamic memory management

123

❖ Pointers

❖ References

❖ Dynamic memory management

6. Pointers, references and dynamic memory management

124

❖ Pointers

• In most cases, we assign values to variables and read their content by

using their names.

• There are cases where this approach is insufficient and the address of a

variable in the memory should be used directly (for example when
calling the Standard Library function scanf ()).

6. Pointers, references and dynamic memory management

125

❖ Pointers

• With the help of pointers, the address of variables (data stored in

memory) and functions can be stored and managed.

• A pointer does not only store address but also have information how to

interpret how many bytes from that given address.

• And this is the type of the referenced data, which is provided in the
definition of pointers (variables).

6. Pointers, references and dynamic memory management

126

❖ Pointers

▪ Single indirection pointers:

• First, let's start with the most frequently used and the simplest form of

pointers, that is with single indirection pointers the general definition of

which is:

type *identifier;

• It is a safe solution to initialize always pointers after they are created

with NULL value, which can be found in most header files:

type *identifier = NULL;

• If more pointers are created within a single statement, all identifier

names should be preceded by an asterisk:

type *identifier1, *identifier2;

6. Pointers, references and dynamic memory management

127

❖ Pointers

▪ Single indirection pointers:

• Many operations can be carried out for pointers; however, there are

three operators that can exclusively be used with pointers:

*ptr Accessing the object ptr points to.

ptr->member The access of the given member of the structure ptr points to

&leftvalue Getting the address of leftvalue.

• An alternative pointer type can also be created by using the keyword

typedef:

6. Pointers, references and dynamic memory management

128

❖ Pointers

▪ Single indirection pointers:

• A single variable can be referenced by many pointers and its value can

be modified by any of them:

Address

of x

6. Pointers, references and dynamic memory management

129

❖ Pointers

▪ Single indirection pointers:

• If a pointer is initialized with an address of a variable of a different type,

a compiler error message is sent:

• If it is not an error and the long type data is to be accessed by bytes,

compilers can be asked to do value assignment by type cast:

or

6. Pointers, references and dynamic memory management

130

❖ Pointers

▪ Pointer arithmetic:

• The allowed pointer arithmetic operations are summarised in a table

where q and p are pointers (not of void* type), n is an integer number

(int or long):

Operation Expression Result

two pointers of the same type can

be subtracted from each other
q - p integer number

an integer number can be added

to a pointer
p + n, p++,++p, p += n, pointer

an integer number can be

subtracted from a pointer
p – n, p--, --p, p -= n pointer

two pointers can be compared p == q, p > q, etc. bool (false or true)

6. Pointers, references and dynamic memory management

131

❖ Pointers

▪ Pointer arithmetic:

• Accordingly, increment and decrement operators can also be used for

pointers and not only for arithmetic types, but in the former case it

means going to the neighbouring element and not an increment or

decrement by one byte.

6. Pointers, references and dynamic memory management

132

❖ Pointers

▪ void * type general pointers:

• C++ also allows for using general pointers without a type (void types),

which only store addresses, so they are not associated to any variable.

• C++ ensures two implicit conversions for pointers. A pointer with any

type can be transformed into a general (void) type pointer, and all

pointers can be initialized by zero (0). For a conversion in the other

direction, explicit type cast should be used.

6. Pointers, references and dynamic memory management

133

❖ Pointers

▪ void * type general pointers:

After any of these indirect value assignments, the value of x becomes 1002.

6. Pointers, references and dynamic memory management

134

❖ Pointers

▪ Multiple indirection pointers:

• Pointers can also be used in the case of multiple indirection relations. In

these cases, the definition of pointers contains more asterisks (*):

type **pointer;

• Let's have a look at some definitions and let's find out what the created

variable is.

6. Pointers, references and dynamic memory management

135

❖ Pointers

▪ Multiple indirection pointers:

• The above detailed definitions can be rewritten in a more

understandable way by alternative (typedef) type names:

Or:

6. Pointers, references and dynamic memory management

136

❖ Pointers

▪ Multiple indirection pointers:

• When these definitions are provided, and when the statements

are executed, the value of x will be 6.

6. Pointers, references and dynamic memory management

137

❖ Pointers

▪ Constant pointers

• C++ compilers strictly verify the usage of const type constants, for

example a constant can be referenced by an appropriate pointer:

• The assignment can be carried out by a pointer pointing to the constant:

6. Pointers, references and dynamic memory management

138

❖ Pointers

▪ Constant pointers

• By using the pdc pointer, we cannot modify the value of the d variable:

• It is a pointer with a constant value, so the value of the pointer cannot be

changed:

• The value of the actmonth pointer cannot be changed only that of

*actmonth.

6. Pointers, references and dynamic memory management

139

❖ Pointers

▪ Constant pointers

• Pointer with a constant value pointing to a constant:

• Neither the pointer, nor the referenced data can be changed.

6. Pointers, references and dynamic memory management

140

❖ References

• Reference types make it possible to reference already existing variables

while defining an alternative name. The general form of their definition:

type &identifier = variable;

• When defining many references with the same type, the sign & should

be typed before all references:

type &identifier1 = variable1, &identifier2 = variable2 ;

• When a reference is defined, initialisation has to be done with a left

value. Let's make a reference to the int type x variable as an example.

• Contrary to pointers, no variable is created to store references in

general. Compilers just give a new name as a second name to the

variable x (r).

6. Pointers, references and dynamic memory management

141

❖ References

• As a consequence, the value of x becomes 12 when the following

statement is evaluated:

r = x + 10;

• While the value of a pointer, and the referenced storage place as a

consequence, can be modified at any time, the reference r is bound to a

variable.

6. Pointers, references and dynamic memory management

142

❖ References

• If a reference is initialized by a constant value or a variable of a different

type, a compiler error message is sent.

• Synonymous reference types can also be created by the keyword

typedef:

6. Pointers, references and dynamic memory management

143

❖ References

• References can be created to pointers just like for other variable types:

• The same can be done with typedef:

6. Pointers, references and dynamic memory management

144

❖ References

• It should be noted that a reference or a pointer cannot be defined for a

reference.

6. Pointers, references and dynamic memory management

145

❖ Dynamic memory management

• The dynamic management of free memory (heap) is a vital part of all

programs. C ensures Standard Library functions for the needed memory

allocation (malloc (),...) and deallocation (free ()) operations. In C++,

the operators new and delete replace the above mentioned library

functions (although the latter are also available).

• Dynamic memory management consists of the following three steps:

1. allocating a free memory block while verifying the success of the

allocation,

2. accessing the memory space with a pointer,

3. freeing (deallocating) the previously allocated memory space.

6. Pointers, references and dynamic memory management

146

❖ Dynamic memory management

▪ Allocating and accessing heap memory

• The operator new allocates a memory space in the heap of the size

corresponding to the type provided in its operand and returns a pointer

pointing to the beginning of that memory space.

• A dynamic array.

6. Pointers, references and dynamic memory management

147

❖ Dynamic memory management

▪ Allocating and accessing heap memory

Dynamic memory allocation

6. Pointers, references and dynamic memory management

148

❖ Dynamic memory management

▪ Allocating and accessing heap memory

6. Pointers, references and dynamic memory management

149

❖ Dynamic memory management

▪ Allocating and accessing heap memory

6. Pointers, references and dynamic memory management

150

❖ Dynamic memory management

▪ Allocating and accessing heap memory

• new can also be followed directly by a pointer in parenthesis, which

makes the operator return the value of the pointer (thus it does not

allocate memory):

• In the examples above, the pointer q reference the memory space p

points to. Pointers can be of a different type:

6. Pointers, references and dynamic memory management

151

❖ Dynamic memory management

▪ Deallocating allocated memory

• Memory blocks allocated by the operator new can be deallocated by the

operator delete:

delete pointer;

delete[] pointer;

• The first form of the operation is used to deallocate one single dynamic

variable, whereas the second one is used in the case of dynamic arrays.

• delete operation also works correctly with pointers of 0 value. In every

other case where the value was not assigned by new, the result

of delete is unpredictable.

6. Pointers, references and dynamic memory management

152

❖ Dynamic memory management

▪ Deallocating allocated memory

6. Pointers, references and dynamic memory management

153

Chapter I. Basics and data management of C++

❖ 1. Creation of C++ programs

❖ 2. Basic data types, variables and constants

❖ 3. Basic operations and expressions

❖ 4. Control program structures

❖ 5. Exception handling

❖ 6. Pointers, references and dynamic memory

management

❖ 7. Arrays and strings

❖ 8. User-defined data types

154

❖ C++ array types

❖ Dynamically allocated arrays

❖ The usage of the vector type

❖ Handling C-style strings

7. Arrays and strings

155

❖ C++ array types

• An array is a set of data of the same type (elements) that are placed in

memory in a linear sequence.

• The most frequently used array type has only one dimension: one-

dimensional array (vector).

• If the elements of an array are intended to be identified by more integer

numbers, storage should be realised by multi-dimensional arrays.

• From among these, we only detail the second most frequent array type,

the two-dimensional array, i.e. (matrix), the elements of which are

stored in a linear sequence by rows.

7. Arrays and strings

156

❖ C++ array types

• The definition of n-dimensional arrays:

7. Arrays and strings

element_typearray_name[size 1][size 2][size 3]…[size n-1][size n]

• In order to access the array elements, an index should be provided for

every dimension in the closed interval between 0, sizei -1: :

array_name[index 1][index 2][index 3]…[index n-1][index n]

where sizei determines the size of the ith dimension.

157

❖ C++ array types

▪ One-dimensional arrays

• Definition of one-dimensional arrays:

7. Arrays and strings

element_type array_name[size];

Graphical representation of an one-dimensional array

158

❖ C++ array types

▪ One-dimensional arrays

• Access the elements of the array using a for loop

7. Arrays and strings

• The size of memory in bytes allocated for the array square is returned by

the expression sizeof (square), whereas the expression

sizeof(square[0]) returns the size of one element.

• The number of elements of an array :

159

❖ C++ array types

▪ One-dimensional arrays

• It should be noted that C++ carry out no check on array indexing. Trying

to access an element at an index that is outside the array bounds can

lead to runtime errors, and tracing back these errors can take too much

time.

7. Arrays and strings

160

❖ C++ array types

▪ One-dimensional arrays

7. Arrays and strings

161

❖ C++ array types

▪ One-dimensional arrays

• Initializing and assigning values to one-dimensional arrays

7. Arrays and strings

element_typearray_name[size] = { initialization list delimited by commas };

162

❖ C++ array types

▪ One-dimensional arrays

• Initializing and assigning values to one-dimensional arrays

7. Arrays and strings

element_typearray_name[size] = { initialization list delimited by commas };

163

❖ C++ array types

▪ One-dimensional arrays

There are two methods for value assignment between two arrays of the
same type and size: for loop and memcpy().

7. Arrays and strings

164

❖ C++ array types

▪ One-dimensional arrays

In the following example, a new element is intended to be inserted in the
array ordered at the position with index 1:

7. Arrays and strings

165

❖ C++ array types

▪ One-dimensional arrays

• One-dimensional arrays and the typedef

7. Arrays and strings

166

❖ C++ array types

▪ One-dimensional arrays

• One-dimensional arrays and the typedef

7. Arrays and strings

167

❖ C++ array types

▪ Two-dimensional arrays

7. Arrays and strings

element_type array_name[size1][size2];

Graphical representation of a two-dimensional array

matrix[1][2]

168

❖ C++ array types

▪ Two-dimensional arrays

7. Arrays and strings

169

❖ C++ array types

▪ Variable-length arrays

7. Arrays and strings

Not support in Visual

Studio C++

170

❖ C++ array types

▪ The relationship between pointers and arrays

7. Arrays and strings

The relationship between

pointers and arrays

171

❖ C++ array types

▪ The relationship between pointers and arrays

• There is an important difference between the two pointers: pointer p is

a variable (its value can therefore be modified any time), while a is a

constant value pointer that the compiler fixes in memory.

• The address of the ith element:

7. Arrays and strings

• The 0th element of the array:

• The ith element of the array:

172

❖ C++ array types

▪ The relationship between pointers and arrays

• In the case of multi-dimensions, analogy is only formal; however, it can

often help using correctly more complex data structures. Let's see the
following double type matrix:

7. Arrays and strings

Two-

dimensional

arrays in

memory

173

❖ Dynamically allocated arrays

▪ One-dimensional dynamic arrays

• It is one-dimensional dynamic arrays that are the most frequently used
in programming.

7. Arrays and strings

• In the first case, the compiler throws an exception (bad_alloc) if there

is not enough available contiguous memory

• In the second case, a pointer with the value of 0 is returned.

174

❖ Dynamically allocated arrays

▪ One-dimensional dynamic arrays

• In case of arrays, it is extremely important not to forget about deleting
allocated memory:

7. Arrays and strings

175

❖ Dynamically allocated arrays

▪ Two-dimensional dynamic arrays

7. Arrays and strings

176

❖ Dynamically allocated arrays

▪ Two-dimensional dynamic arrays

• For both solutions, setting all elements to zero can be carried out by the
following loops:

7. Arrays and strings

Dynamically allocated row vectors

177

❖ Dynamically allocated arrays

▪ Two-dimensional dynamic arrays

• Memory allocation, access and deallocation can easily be traced in the
following example code:

7. Arrays and strings

178

❖ Dynamically allocated arrays

▪ Two-dimensional dynamic arrays

7. Arrays and strings

Dynamically allocated pointer vector and row vectors

179

❖ The usage of the vector type

▪ One-dimensional arrays in vectors

• As its name suggests, vector type replaces one-dimensional arrays.

7. Arrays and strings

ivector is an empty vector, the size of which is set by the function resize() to 10.

lvector contains 12 elements of type long. In both cases, all elements are

initialized to 0.

fvector is created with 7 elements of type float, the values of which are all

initialized to 1.0.

180

❖ The usage of the vector type

▪ One-dimensional arrays in vectors

• The actual number of elements can be obtained by the function size ().

An important feature of vector type is the function push_back () that
adds an element to the vector.

7. Arrays and strings

181

❖ Handling C-style strings

• Two-dimensional, dynamic arrays can be created by nesting vector
types, and it is much easier than the methods mentioned before.

7. Arrays and strings

String constant in memory

cout << "C++ language";

182

❖ Handling C-style strings

• Strings composed of wide characters are also stored in that way but in
this case the type of the elements of the array is wchar_t.

7. Arrays and strings

wcout << L"C++ language";

• In C++, the types string and wstring can also be used to process
texts, so we give an overview of these types, too.

183

❖ Handling C-style strings

▪ Strings in one-dimensional arrays

• If a text of at most 80 characters is intended to be stored in the array named str

then its size should be 80+1=81:

char line[81];

• In programming tasks, we often use strings having an initial value.

7. Arrays and strings

184

❖ Handling C-style strings

▪ Strings in one-dimensional arrays

• Initializing character arrays is much safer by using string literals (string

constants):

7. Arrays and strings

Operation Function (char) Function (wchar_t)

reading text from the keyboard
cin >>, cin . get (),

cin . getline ()

wcin >>, wcin . get (),

wcin . getline ()

printing out a text cout << wcout <<

value assignment strcpy (), strncpy () wcscpy(), wcsncpy()

concatenation strcat (), strncat () wcscat(), wcsncat()

getting the length of a string strlen () wcslen()

comparison of strings strcmp (), strcnmp () wcscmp(), wcsncmp()

searching for a character in a string strchr () wcschr()

185

❖ Handling C-style strings

▪ Strings in one-dimensional arrays

7. Arrays and strings

186

❖ Handling C-style strings

▪ Strings and pointers

• Character arrays and character pointers can both be used to manage strings

but pointers should be used more carefully. Let's see the following frequent

definitions.

7. Arrays and strings

• The value of the pointer pstr can be modified later (which causes the loss of the

string "gamma"):

• A pointer value assignment takes place here since pstr now points to the

address of the new string literal. On the contrary, if it is the name of the

array str to which a value is assigned, an error message is obtained:

187

❖ Handling C-style strings

▪ Strings and pointers

7. Arrays and strings

188

❖ Handling C-style strings

▪ Using string arrays

7. Arrays and strings

189

❖ Handling C-style strings

▪ Using string arrays

7. Arrays and strings

String array stored in a two-dimensional array

190

❖ Handling C-style strings

▪ Using string arrays

7. Arrays and strings

Optimally stored string array

191

7. Arrays and strings

❖ Handling C-style strings

▪ The string type

Operation C++ solution - string C++ solution - wstring

reading text from the keyboard cin>> , getline () wcin>> , getline ()

printing out a text cout<< wcout<<

value assignment = , .assign () = , .assign ()

concatenation + , += + , +=

accessing the characters of a

string
[] []

getting the length of a string .size () .size ()

comparison of strings
.compare (), == , != , < , <= , > ,

>=

.compare (), == , != , < , <= , > ,

>=

conversion into C-style

character sequence
.c_str (), .data () .c_str (), .data ()

192

7. Arrays and strings

❖ Handling C-style strings

▪ The string type

193

Chapter I. Basics and data management of C++

❖ 1. Creation of C++ programs

❖ 2. Basic data types, variables and constants

❖ 3. Basic operations and expressions

❖ 4. Control program structures

❖ 5. Exception handling

❖ 6. Pointers, references and dynamic memory

management

❖ 7. Arrays and strings

❖ 8. User-defined data types

194

❖ The structure type

❖ The class type

❖ The union type

❖ Bit fields

8. User-defined data types

195

❖ The structure type

▪ Structure type and structure variables

• The general declaration of structures is as follows:

A structure variable (a structure) of the type above can be created by the

already known method:

8. User-defined data types

196

❖ The structure type

▪ Structure type and structure variables

• In C++, the name standing after the keywords struct, union and class can be

used as type names without using the keywords. When typedef is used, the

difference between the two programming languages disappears:

8. User-defined data types

197

❖ The structure type

▪ Structure type and structure variables

• The lists of the expressions, separated from one another by commas,

initializing the data members should be enclosed within curly brackets.

structure_type structure_variable= {initial_value_list}; // C/C++

8. User-defined data types

198

❖ The structure type

▪ Structure type and structure variables

Structure in memory

8. User-defined data types

199

8. User-defined data types

❖ The structure type

▪ Accessing the data members of structures

• Let's define some variables by using the type musicCD declared before.

• How to give values to data members

200

❖ The structure type

▪ Accessing the data members of structures

• Accordingly, the meaning of the expression ps->price is: "the data member

named price within the structure to which the pointer ps points".

8. User-defined data types

201

8. User-defined data types

202

❖ The structure type

▪ Nested structures

8. User-defined data types

203

❖ The structure type

▪ Nested structures

• If the structure of type date is not used anywhere else then it can be integrated

directly as an anonymous structure in the structure person:

8. User-defined data types

• Self-referential structures

204

❖ The structure type

▪ Structures and arrays

• Arrays as data members of a structure

8. User-defined data types

205

❖ The structure type

▪ Structures and arrays

• Structures as array elements

8. User-defined data types

206

8. User-defined data types

Processing data in the program CDCatalogue

207

❖ The structure type

▪ Creating singly linked lists

• The simplest forms of linked lists are singly linked lists in which all elements

possess a reference to the next list element. The reference in the last element

has the value null.

8. User-defined data types

A singly linked list

208

❖ The structure type

▪ Creating singly linked lists

• C++ list elements can be created by the already presented self-referential

structure.

8. User-defined data types

• Since we allocate memory for each new list element in this example, this

operation is carried out by a function to be presented in the next chapter of the

present book:

209

❖ The structure type

▪ Creating singly linked lists

• Creating the list and filling up it from the array data.

8. User-defined data types

210

❖ The structure type

▪ Creating singly linked lists

• printing out the elements of the list.

8. User-defined data types

• remove an element from a list.

211

❖ The structure type

▪ Creating singly linked lists

• inserting a new element to a list.

8. User-defined data types

212

❖ The structure type

▪ Creating singly linked lists

• add a new element to (the end of) the list.

8. User-defined data types

213

❖ The structure type

▪ Creating singly linked lists

• search for an element of a given value (sdata) in the list.

8. User-defined data types

• delete the elements of a list.

214

❖ The class type

• A class can contain member functions besides its data members.

8. User-defined data types

struct time {

int hour;

int minute;

int second;

};

class time {

public:

int hour;

int minute;

int second;

};

struct time {

private:

int hour;

int minute;

int second;

};

class time {

int hour;

int minute;

int second;

};

215

❖ The class type

• The definitions of variables of a struct or class type can only contain initial

values, if the given class type only has public data members.

8. User-defined data types

216

❖ The union type

8. User-defined data types

217

❖ The union type

8. User-defined data types

Union in memory

218

❖ The structure type

▪ Anonymous unions

8. User-defined data types

219

❖ The structure type

▪ Anonymous unions

8. User-defined data types

Name : BME

Address : Budapest, Muegyetem

rkpt 3-11.

Name : National Bank

ID : 3751564

220

❖ Bit fields

• Classes and structures may contain members for which compilers use a space

less than for integer types. Since the storage space is determined by number of

bits for these members, they are called bit fields. The general declaration of bit

fields:

8. User-defined data types

type name_of_bitfield : bitlength;

221

❖ Bit fields

8. User-defined data types

The layout of the structure date in memory

222

❖ Bit fields

8. User-defined data types

KỸ THUẬT LẬP TRÌNH HỆ CƠ ĐIỆN TỬ

Programming Engineering in Mechatronics

1

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Giảng viên: TS. Nguyễn Thành Hùng

Đơn vị: Bộ môn Cơ điện tử, Viện Cơ khí

Hà Nội, 2020

2

Chapter II. Modular programming in C++

• Structured programming relies on top-down design.

• In C and C++ languages, the smallest structural unit having

independent functionality is called function.

• If functions or a group of functions belonging together are

put in a separate module (source file), modular

programming is realised.

• Structural programming also contributes to creating new

programs from achieved modules (components) by bottom-

up design.

• This chapter aims to introduce the modular and procedural

programming in C++.

3

Chapter II. Modular programming in C++

❖ The basics of functions

❖ How to use functions on a more professional level?

❖ Namespaces and storage classes

❖ Preprocessor directives of C++

4

Chapter II. Modular programming in C++

❖ The basics of functions

❖ How to use functions on a more professional level?

❖ Namespaces and storage classes

❖ Preprocessor directives of C++

5

The basics of functions

❖ Defining, calling and declaring functions

❖ The return value of functions

❖ Parametrizing functions

❖ Programming with functions

6

The basics of functions

• In C++, a function is a unit (a subprogram) that has a name and that can

be called from the other parts of a program as many times as it is

needed.

• In order to use a function efficiently, some of its inner variables

(parameters) are assigned a value when the function is called.

• When a function is called (activated), the values (arguments) to be

assigned to each parameter have to be passed in a similar way.

• The called function passes control back to the place where it was called

by a return statement.

• The value of the expression in the return statement is the return

value returned back by the function, which is the result of the function

call expression.

7

The basics of functions

❖ Defining, calling and declaring functions

• C++ Standard Library provides us many useful predefined
functions.

function header file

sqrt() cmath

isalpha() cctype

atoi() cstdlib

rand() cstdlib

strlen() cstring

wcslen() cwchar

8

The basics of functions

❖ Defining, calling and declaring functions

• The general form of a function definition is the following (the
signs 〈 〉 indicate optional parts):

Function definition

9

The basics of functions

❖ Defining, calling and declaring functions

10

The basics of functions

❖ Defining, calling and declaring functions

• The steps of calling a function

function_name (〈argument 1 , argument 2 , … argument n 〉)

Steps of calling a function

11

The basics of functions

❖ Defining, calling and declaring functions

• C++ standards require that functions have to be declared before
they are called.

Function declaration

Function definition

12

The basics of functions

❖ Defining, calling and declaring functions

• The complete declaration of a function (its prototype):

return_value function_name(〈parameter declaration list〉);

return_value function_name(〈type_list〉);

declaration C interpretation C++ interpretation

type funct(); type funct(...); type funct(void);

type funct(...); type funct(...); type funct(...);

type funct(void); type funct(void); type funct(void);

13

The basics of functions

❖ Defining, calling and declaring functions

• C++ makes it possible that a parameter list containing at least one parameter
should end with three dots (...).

• The transferring (throw) of exceptions to the caller function can be enabled or
disabled in function header

return_type function_name (〈parameterlist〉) 〈throw(〈type_list〉)〉
{

〈local definitions and declarations〉
〈statements〉
return 〈expression〉;

}

14

The basics of functions

❖ The return value of functions

• The return_type figuring in the definition/declaration of a function
determines the return type of the function, which can be of any C++ type with
the exception of arrays and functions.

15

The basics of functions

❖ The return value of functions

• By using the type void, we can create functions that do not
return any value.

16

The basics of functions

❖ The return value of functions

• Functions can return pointers or references

17

The basics of functions

❖ Parametrizing functions

• A parameter can be scalar (bool, char, wchar_t, short, int, long, long long,
float, double, enumeration, reference and pointer) or structure, union, class
or array.

The general form of polynomials:

Horner's scheme

18

The basics of functions

❖ Parametrizing functions

▪ Parameter passing methods

• Passing parameters by value

19

The basics of functions

❖ Parametrizing functions

▪ Parameter passing methods

• Passing parameters by value

20

The basics of functions

❖ Parametrizing functions

▪ Parameter passing methods

• Passing parameters by reference

21

The basics of functions

❖ Parametrizing functions

▪ Parameter passing methods

• Passing parameters by reference

22

The basics of functions

❖ Parametrizing functions

▪ Parameter passing methods

• Passing parameters by reference

23

❖ Parametrizing functions

▪ Using parameters of different types

• Arithmetic type parameters

The basics of functions

24

❖ Parametrizing functions

▪ Using parameters of different types

• Arithmetic type parameters

The basics of functions

25

❖ Parametrizing functions

▪ Using parameters of different types

• User-defined type parameters

The basics of functions

26

❖ Parametrizing functions

▪ Using parameters of different types

• User-defined type parameters

The basics of functions

27

❖ Parametrizing functions

▪ Using parameters of different types

• Passing arrays to functions

The basics of functions

28

❖ Parametrizing functions

▪ Using parameters of different types

• Passing arrays to functions

The basics of functions

29

❖ Parametrizing functions

▪ Using parameters of different types

• Passing arrays to functions

The basics of functions

30

❖ Parametrizing functions

▪ Using parameters of different types

• Passing arrays to functions

The basics of functions

31

❖ Parametrizing functions

▪ Using parameters of different types

• Passing arrays to functions

The basics of functions

32

❖ Parametrizing functions

▪ Using parameters of different types

• String arguments

The basics of functions

33

❖ Parametrizing functions

▪ Using parameters of different types

• String arguments

The basics of functions

34

The basics of functions

❖ Parametrizing functions

▪ Using parameters of different types

• String arguments

35

The basics of functions

❖ Parametrizing functions

▪ Using parameters of different types

• String arguments

36

The basics of functions

❖ Parametrizing functions

▪ Using parameters of different types

• Functions as arguments

37

The basics of functions

❖ Parametrizing functions

▪ Using parameters of different types

• Functions as arguments

38

The basics of functions

❖ Parametrizing functions

▪ Using parameters of different types

• Default arguments

Call
Parameters

n d a0

SeqSum() 10 1 1

SeqSum(12) 12 1 1

SeqSum(12,3) 12 3 1

SeqSum(12, 3, 7) 12 3 7

39

The basics of functions

❖ Parametrizing functions

▪ Using parameters of different types

• Variable length argument list

40

The basics of functions

❖ Parametrizing functions

▪ Using parameters of different types

• Variable length argument list

41

The basics of functions

❖ Parametrizing functions

▪ Using parameters of different types

• Parameters and return value of the main() function

42

❖ Parametrizing functions

▪ Using parameters of different types

• Parameters and return value of the main() function

Providing
command
line
arguments

The basics of functions

43

❖ Parametrizing functions

▪ Using parameters of different types

• Parameters and return value of the main() function

In a console window In a development environment

C:\C++Book>command1 first 2nd third
number of arguments: 4
0: command1 1: first 2: 2nd 3: third
C:\C++Book>

C:\C++Book>command1 first 2nd third
number of arguments: 4
0: C:\C++Book\command1.exe 1: first 2: 2nd
3: third
C:\C++Book>

The basics of functions

44

❖ Parametrizing functions

▪ Using parameters of different types

• Parameters and return value of the main() function

The basics of functions

45

❖ Parametrizing functions

▪ Using parameters of different types

• Parameters and return value of the main() function

Wrong number of parameters:
command2

Correct number of parameters:
command2 alfa beta

Wrong number of parameters!
Usage: command2 arg1 arg2

Correct number of parameters: 1.
argument: alfa 2. argument: beta

The basics of functions

46

❖ Defining, calling and declaring functions

❖ The return value of functions

❖ Parametrizing functions

❖ Programming with functions

The basics of functions

47

❖ Programming with functions

▪ Exchanging data between functions using global variables

The basics of functions

48

❖ Programming with functions

▪ Exchanging data between functions using global variables

• Solution for above example

The basics of functions

49

❖ Programming with functions

▪ Exchanging data between functions using global variables

• Solution for above example

The basics of functions

50

❖ Programming with functions

▪ Exchanging data between functions using parameters

The basics of functions

51

❖ Programming with functions

▪ Exchanging data between functions using parameters

The basics of functions

52

❖ Programming with functions

▪ Exchanging data between functions using parameters

The basics of functions

53

❖ Programming with functions

▪ Implementing a simple menu driven program structure

The basics of functions

54

❖ Programming with functions

▪ Recursive functions

• Factorial:

more efficient

The basics of functions

55

❖ Programming with functions

▪ Recursive functions

• Fibonacci numbers:

more efficient

The basics of functions

56

❖ Programming with functions

▪ Recursive functions

• greatest common divisor (gcd):

The basics of functions

57

❖ Programming with functions

▪ Recursive functions

• binomial numbers:

The basics of functions

58

❖ Programming with functions

▪ Recursive functions

The basics of functions

59

❖ Programming with functions

▪ Recursive functions

The basics of functions

60

Chapter II. Modular programming in C++

❖ The basics of functions

❖ How to use functions on a more professional level?

❖ Namespaces and storage classes

❖ Preprocessor directives of C++

61

How to use functions on a more professional level?

❖ Inline functions

❖ Overloading (redefining) function names

❖ Function templates

62

❖ Inline functions

• C++ compilers decrease the time spent on calling the functions
marked with the keyword inline.

• This solution is recommended to be used for small-sized and
frequently called functions.

How to use functions on a more professional level?

63

❖ Inline functions

How to use functions on a more professional level?

64

❖ Inline functions

❖ Overloading (redefining) function names

❖ Function templates

How to use functions on a more professional level?

65

❖ Overloading (redefining) function names

• Different functions can be defined with the same name and
within the same scope but with a different parameter list.

How to use functions on a more professional level?

66

❖ Overloading (redefining) function names

How to use functions on a more professional level?

67

❖ Inline functions

❖ Overloading (redefining) function names

❖ Function templates

How to use functions on a more professional level?

68

❖ Function templates

▪ Creating and using function templates

• A template declaration starts with the keyword template,
followed by the parameters of the template enclosed within the
signs < and >.

How to use functions on a more professional level?

69

❖ Function templates

▪ Creating and using function templates

How to use functions on a more professional level?

70

❖ Function templates

▪ Creating and using function templates

How to use functions on a more professional level?

71

❖ Function templates

▪ Function template instantiation

• A function template can be instantiated in an explicit way as well
if concrete types are provided in the template line containing the
header of the function:

How to use functions on a more professional level?

72

❖ Function templates

▪ Function template specialization

How to use functions on a more professional level?

73

❖ Function templates

▪ Some further function template examples

How to use functions on a more professional level?

74

❖ Function templates

▪ Some further function template examples

How to use functions on a more professional level?

75

❖ Function templates

▪ Some further function template examples

How to use functions on a more professional level?

76

Chapter II. Modular programming in C++

❖ The basics of functions

❖ How to use functions on a more professional level?

❖ Namespaces and storage classes

❖ Preprocessor directives of C++

77

Namespaces and storage classes

❖ Storage classes of variables

❖ Storage classes of functions

❖ Modular programs in C++

❖ Namespaces

78

❖ Storage classes of variables

▪ A storage class:

• defines the lifetime or storage duration of a variable,

• determines the place from where the name of a variable can be
accessed directly – visibility, scope – and also determines which
name designates which variable – linkage.

▪ A storage class (auto, register, static, extern) can be assigned to
variables when they are defined.

Namespaces and storage classes

79

❖ Storage classes of variables

Namespaces and storage classes

80

❖ Storage classes of variables

▪ Accessibility (scope) and linkage of variables

• In a C++ source code, variables can have one of the following scopes:

block
level

A variable of this type is only visible in the block (function block) where it has been
defined so its accessibility is local.
If a variable is defined on a block level without the storage classes extern and static,
it does not have any linkage.

Namespaces and storage classes

file level

A file level variable is only visible in the module containing its declaration.
Identifiers having file level scope are those that are declared outside the functions
of the module and that are declared with internal linkage using the static storage
class.

program
level

A program level variable is accessible from the functions of all the modules (all
compilation units) of a program.
Global variables that are declared outside the functions of a module (that is
with external linkage) have program level scope.

81

Variable scopes

Namespaces and storage classes

82

❖ Storage classes of variables

▪ Lifetime of variables

• A lifetime is a period of program execution where the given
variable exists.

static lifetime
Identifiers having a static or extern storage class have a static
lifetime.

Namespaces and storage classes

automatic
lifetime

Within blocks, variables defined without the static storage class and
the parameters of functions have automatic (local) lifetime.

dynamic
lifetime

Independently of their storage classes, memory blocks that are
allocated by the operator new and deallocated by the
operator delete have dynamic lifetime.

83

❖ Storage classes of variables

▪ Storage classes of block level variables

• Automatic variables: Automatic variables are created when
control is passed to their block and they are deleted when that
block is exited.

Namespaces and storage classes

84

❖ Storage classes of variables

▪ Storage classes of block level variables

• The register storage class: The register storage class can only be
used for automatic local variables and function parameters.

Namespaces and storage classes

85

❖ Storage classes of variables

▪ Storage classes of block level variables

• Local variables with static lifetime.

Namespaces and storage classes

86

❖ Storage classes of variables

▪ Storage classes of file level variables

Namespaces and storage classes

87

❖ Storage classes of variables

▪ Storage classes of program level variables

Same definitions (only one of them can
be used)

Declarations

double sum;
double sum = 0;
extern double sum = 0;

extern double sum;

int vector[12];
extern int vector[12] = {0};

extern int vector[];
extern int vector[12];

extern const int size = 7; extern const int size;

Namespaces and storage classes

88

❖ Storage classes of variables

❖ Storage classes of functions

❖ Modular programs in C++

❖ Namespaces

Namespaces and storage classes

89

❖ Storage classes of functions

Definitions (only one of them can be used) Prototypes

double GeomMean(double a, double b) {
return sqrt(a*b); }
extern double GeomMean(double a,
double b) { return sqrt(a*b); }

double GeomMean(double, double);

extern double GeomMean(double,
double);

static double GeomMean(double a, double
b) { return sqrt(a*b); }

static double GeomMean(double,
double);

Namespaces and storage classes

90

❖ Storage classes of functions

Namespaces and storage classes

91

❖ Storage classes of functions

• Accessing the compiled C functions from within C++ source: use
the extern "C" declaration.

Namespaces and storage classes

92

❖ Storage classes of variables

❖ Storage classes of functions

❖ Modular programs in C++

❖ Namespaces

Namespaces and storage classes

93

❖ Modular programs in C++

Namespaces and storage classes

94

❖ Modular programs in C++

Namespaces and storage classes

95

❖ Storage classes of variables

❖ Storage classes of functions

❖ Modular programs in C++

❖ Namespaces

Namespaces and storage classes

96

❖ Namespaces

▪ The default namespaces of C++ and the scope operator

• C++ enclose Standard library elements in the namespace
called std.

• In order to be able to refer the elements of a namespace, we
have to know how to use the scope operator (::).

• With the help of :: operator, we can refer names having file and
program level scope (that is identifiers of the global namespace)
from any block of a program.

Namespaces and storage classes

97

❖ Namespaces

▪ The default namespaces of C++ and the scope operator

Namespaces and storage classes

98

❖ Namespaces

▪ Creating and using user-defined namespaces

• Creating namespaces

Namespaces and storage classes

99

❖ Namespaces

▪ Creating and using user-defined namespaces

• Accessing the identifiers of a namespace

Directly by using the scope operator: Or by using the directive using namespace:

Namespaces and storage classes

100

❖ Namespaces

▪ Creating and using user-defined namespaces

• Accessing the identifiers of a namespace

Or by providing using -declarations:

Namespaces and storage classes

101

❖ Namespaces

▪ Creating and using user-defined namespaces

• Nested namespaces, namespace aliases:

Namespaces and storage classes

102

❖ Namespaces

▪ Creating and using user-defined namespaces

• Nested namespaces, namespace aliases:

Namespaces and storage classes

103

❖ Namespaces

▪ Creating and using user-defined namespaces

• Nested namespaces, namespace aliases:

Namespaces and storage classes

104

• Anonymous namespaces:

Namespaces and storage classes

105

Chapter II. Modular programming in C++

❖ The basics of functions

❖ How to use functions on a more professional level?

❖ Namespaces and storage classes

❖ Preprocessor directives of C++

106

Preprocessor directives of C++

The compilation process in C++

107

❖ Including files

❖ Conditional compilation

❖ Using macros

Preprocessor directives of C++

108

❖ Including files

The following table sums up the keywords and language elements that
can be used in header files:

C++ elements Example

Comments // comment

Conditional directives #ifdef MOTOROLA

Macro definitions #define INTEL

#include directives #include <string>

Enumerations enum response {no, yes, maybe};

Constant definitions const double pi=3.1415265;

Preprocessor directives of C++

109

❖ Including files

C++ elements Example

Namespaces having an identifier namespace nsrand { }

Name declarations struct vector3D;

Type definitions struct complex {double re, im;};

Variable declarations extern double point[];

Function prototypes double Average(double, double);

inline function definitions inline int Sqr(int a) {return a*a;}

template declarations template <class T> T Sqr(T a);

template definitions
template <class T> T Sqr(T a)
{return a*a;}

Preprocessor directives of C++

110

❖ Including files

• definitions of non-inline functions,

• variable definitions,

• definitions of anonymous namespaces.

The following elements should never be placed in include files:

Preprocessor directives of C++

111

❖ Including files

➢One part of the elements that can be placed in a header file have
to be included only once in a code.

➢That is why, all header files have to have a special preprocessing
structure based on conditional directives:

Preprocessor directives of C++

112

❖ Including files

❖ Conditional compilation

❖ Using macros

Preprocessor directives of C++

113

❖ Conditional compilation

• The code parts to be compiled under conditions can be selected
in many ways, by using the following preprocessor directives:
#if, #ifdef, #ifndef, #elif, #else and #endif.

Preprocessor directives of C++

114

❖ Conditional compilation

• Instead of the structure above, it is better to use a solution that
examines the definition of the symbol TEST.

Preprocessor directives of C++

115

❖ Conditional compilation

• Each pair of the following checkings return the same results:

#if defined(TEST)
... // defined
#endif

#ifdef TEST
... // defined
#endif

#if !defined(TEST)
... // not defined
#endif

#ifndef TEST
... // not defined
#endif

Preprocessor directives of C++

116

❖ Conditional compilation

• If the following structure is used, we can choose between two
code parts:

Preprocessor directives of C++

117

❖ Conditional compilation

• The following example creates the two-dimensional array named
array depending on the value of the symbol SIZE:

Preprocessor directives of C++

118

❖ Conditional compilation

• For more complex structures, it is recommended to use multi-
way branches.

Preprocessor directives of C++

119

❖ Conditional compilation

• The following example integrates the declaration file on the basis
of the manufacturer:

Preprocessor directives of C++

120

❖ Including files

❖ Conditional compilation

❖ Using macros

Preprocessor directives of C++

121

❖ Using macros

▪ Symbolic constants

• Symbolic constants can be created by using the simple form of
the #define directive:

Preprocessor directives of C++

122

❖ Using macros

▪ Symbolic constants

Preprocessor directives of C++

123

❖ Using macros

▪ Parameterized macros

• The macros can be efficiently used in much more cases if they
are parameterized. The general form of a function-like
parameterized macro:

• Using (calling) a macro:

Preprocessor directives of C++

124

❖ Using macros

▪ Parameterized macros

Preprocessor directives of C++

125

❖ Using macros

▪ Parameterized macros

• All advantages of macros (type-independence, faster code) can
be achieved by using inline functions/function templates
(instead of macros) while keeping the C++ code legible:

Preprocessor directives of C++

126

❖ Using macros

▪ Undefining a macro

• A macro can be undefined anytime and can be redefined again,
even with a different content. It can be undefined by using
the #undef directive.

Original source code Substituted code

int main() {
#define MACRO(x) (x) + 7
int a = MACRO(12);
#undef MACRO
a = MACRO(12);
#define MACRO 123
a = MACRO

}

int main() {
int a = (12) + 7;
a = MACRO(12);
a = 123

}

Preprocessor directives of C++

127

❖ Using macros

▪ Macro operators

• If the # character is placed before the parameter in a macro, the
value of the parameter is replaced as enclosed within quotation
marks (i.e. as a string).

Preprocessor directives of C++

128

❖ Using macros

▪ Macro operators

• By using the ## operator, two syntactic units (tokens) can be
concatenated.

Preprocessor directives of C++

129

❖ Using macros

▪ Predefined macros

Macro Description Example

__DATE__ String constant containing the date of the compilation. "Oct 02 2013"

__TIME__ String constant containing the time of the compilation. "10:02:04"

__TIMESTAMP_
_

The date and time of the last modification of the source file
in a string constant"

"Mon Jul 29
07:33:29 2013"

__FILE__ String constant containing the name of the source file.
"c:\\preproc.cpp
"

__LINE__
A numeric constant, containing the number of the actual
line of the source file (numbering starts from 1).

1223

__STDC__
Its value is 1 if the compiler works as an ANSI C++,
otherwise it is not defined.

__cplusplus
Its value is 1, if its value is tested in a C++ source file,
otherwise it is not defined.

Preprocessor directives of C++

130

❖ Using macros

▪ #line, #error and #pragma directives

• The #line directive forces C++ compilers not to signal the error
code in the C++ source text but in the original source file written
in another special language.

Preprocessor directives of C++

131

❖ Using macros

▪ #line, #error and #pragma directives

• An #error directive can be used to print out a compilation error
message which contains the text provided in the statement:

#error error_message

Preprocessor directives of C++

132

❖ Using macros

▪ #line, #error and #pragma directives

• #pragma directives are used to control the compilation process
in an implementation-dependent way.

• The empty directive (#) can also be used, but it does not affect
preprocessing.

Preprocessor directives of C++

KỸ THUẬT LẬP TRÌNH HỆ CƠ ĐIỆN TỬ

Programming Engineering in Mechatronics

1

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Giảng viên: TS. Nguyễn Thành Hùng

Đơn vị: Bộ môn Cơ điện tử, Viện Cơ khí

Hà Nội, 2020

2

Chapter III. Object-oriented programming in C++

❖ Introduction to the object-oriented world

❖ Classes and objects

❖ Inheritance (derivation)

❖ Polymorphism

❖ Class templates

3

Chapter III. Object-oriented programming in C++

❖ Introduction to the object-oriented world

❖ Classes and objects

❖ Inheritance (derivation)

❖ Polymorphism

❖ Class templates

4

Introduction to the object-oriented world

❖ Basics

❖ Basic principles

❖ An object-oriented example code

5

❖ Basics

▪ Class

• A class determines the abstract features of a object, including its
features (attributes, fields, properties) and its behaviour (what
the thing can do, methods, operations and functions).

• We can say that a class is a scheme describing the nature of
something.

• Both the integrated properties and the methods of a class are
called class members.

Introduction to the object-oriented world

6

❖ Basics

▪ Object

• An object is a scheme (an example) of a class.

▪ Instance

• Instance means an actual object created at runtime: myCar is an
instance of the class Truck.

• The set of the property values of the actual object is called
the state of that object.

Introduction to the object-oriented world

7

❖ Basics

▪ Method

• Methods are responsible for the capabilities of objects: the
methods of myCar: Brake(), Ignition(), ...

• In C++, methods are rather called member functions.

▪ Message passing

• Message passing is the process during which an object sends
data to another object or "asks" another object to execute one
of its methods.

• On the code level, message passing is realised by calling a
method in C++.

Introduction to the object-oriented world

8

❖ Basics

❖ Basic principles

❖ An object-oriented example code

Introduction to the object-oriented world

9

❖ Basic principles

▪ Encapsulation, data hiding

• Classes principally consist of features (state) and methods
(behaviour).

• There are some features and methods that we hide from other
objects. These are internal (private or protected) states and
behaviour.

• However, the others are made public.

• According to the basic principles of OOP, the state features have
to be private while most of the methods may be public.

Introduction to the object-oriented world

10

❖ Basic principles

▪ Inheritance

• Inheritance means creating specific versions of a class that inherit the
features and behaviour of their parent class (base class) and use them as if
they were of their own. The classes created in this way are called subclasses
or derived classes.

Inheritance

Introduction to the object-oriented world

11

❖ Basic principles

▪ Inheritance

• Actually, inheritance is an is-a relation: myCar is a HeavyTruck,
a HeavyTruck is a Truck. So myCar has the methods of both
HeavyTruck and Truck.

• Both derived classes have one direct parent class, namely Truck.
This inheritance method is called single inheritance.

• Multiple inheritance means that a derived class inherits the
members of more direct parent classes.

Introduction to the object-oriented world

12

❖ Basic principles

▪ Inheritance

Multiple inheritance

Introduction to the object-oriented world

13

❖ Basic principles

▪ Abstraction

• Abstraction simplifies complex reality by modelling problems
with their corresponding classes and it has its effects on the level
of inheritance appropriate for these problems.

• Abstraction can be achieved through composition.

• An interface determines how to send element or receive from
element messages and it gives information about the interaction
between the components of the class.

Introduction to the object-oriented world

14

❖ Basic principles

▪ Abstraction

Introduction to the object-oriented world

15

❖ Basic principles

▪ Polymorphism

• Polymorphism makes it possible to replace the content of some
inherited (deprecated) behaviour forms (methods) with a new
one in the derived class and to treat the new, replaced methods
as the members of the parent class.

Introduction to the object-oriented world

16

❖ Basics

❖ Basic principles

❖ An object-oriented example code

Introduction to the object-oriented world

17

❖ An object-oriented example code

Introduction to the object-oriented world

18

Chapter III. Object-oriented programming in C++

❖ Introduction to the object-oriented world

❖ Classes and objects

❖ Inheritance (derivation)

❖ Polymorphism

❖ Class templates

19

Classes and objects

❖A class declaration has two parts:

➢ The header of the class contains the keyword class/struct,
followed by the name of the class.

➢ The class body is enclosed within curly brackets followed by a
semi-colon ➔ contain the data members, member functions, and
the keywords regulating access to the members and followed by a
colon: public, private (hidden) and protected.

20

Classes and objects

❖General form of a class:

21

❖ From structures to classes

❖ More about classes

❖ Operator overloading

Classes and objects

22

❖ From structures to classes

▪ A little revision

Classes and objects

23

❖ From structures to classes

▪ Grouping together data and operations

Classes and objects

24

❖ From structures to classes

▪ Data hiding

• In object-oriented programming it is required that the data
members of classes could not be accessed directly from the
outside.

• The type struct offers complete access to its members by
default, whereas the class type completely hides its members
from the outside.

• The access of class elements can be defined by programmers as
well with the keywords private, protected and public.

Classes and objects

25

❖ From structures to classes

▪ Data hiding

Classes and objects

26

❖ From structures to classes

▪ Constructors

• A constructor is a member function the name of which
corresponds to the name of the class and has no return type.

• A constructor only has to initialise the memory space already
allocated for the object.

• A class has two constructors by default: a constructor without
parameters (default) and a copy constructor.

Classes and objects

27

❖ From structures to classes

▪ Constructors

Classes and objects

28

❖ From structures to classes

▪ Constructors

Classes and objects

29

❖ From structures to classes

▪ Constructors

• Constructors with and without parameters are often contracted
by introducing default arguments:

Classes and objects

30

❖ From structures to classes

▪ Constructors

• Using member initialisation lists

Classes and objects

31

❖ From structures to classes

▪ Constructors

• Explicit initialisation of objects

Classes and objects

32

❖ From structures to classes

▪ Destructor

• C++ offers a special member function, the destructor, in which
we can free the allocated resources.

• The name of a destructor has to be provided as a class name
with the tidle character (~).

• A destructor, just like constructors, does not return any value.

Classes and objects

33

❖ From structures to classes

▪ Destructor

Classes and objects

34

❖ From structures to classes

▪ Destructor

• If a destructor is not written for a class, the compiler
automatically adds an empty destructor for that class.

Classes and objects

35

❖ From structures to classes

▪ Objects of a class, the pointer this

The class Employee and its objects

Classes and objects

36

❖ From structures to classes

▪ Objects of a class, the pointer this

• Each member function has an invisible parameter (this) in which
a pointer to the actual object is passed to the function when it is
called.

• All references to data members are inserted in a program code
automatically in the following way:

Classes and objects

37

❖ From structures to classes

▪ Objects of a class, the pointer this

• Programmers may also use the pointer this within member
functions.

Classes and objects

38

❖ From structures to classes

❖ More about classes

❖ Operator overloading

Classes and objects

39

❖ More about classes

▪ Static class members

• A static data member that is created in only one instance belongs
directly to the class; therefore it is available for it even if there
are no objects for that class.

• A static data member should not be initialised within its class
(independently of its access restriction).

• If a static data member is public, then it can be used anywhere in
the program code by the name of the class and the scope
operator (::).

Classes and objects

40

❖ More about classes

▪ Static class members

Classes and objects

41

❖ More about classes

▪ Static class members

Classes and objects

42

❖ More about classes

▪ How to structure classes

• Implicit inline member functions

Classes and objects

43

❖ More about classes

▪ How to structure classes

• Class structures in C++/CLI applications

Classes and objects

44

❖ More about classes

▪ How to structure classes

• Storing member functions in separate modules

Classes and objects

45

❖ More about classes

▪ Friend functions and classes

• The friend mechanism makes it possible for us to access the
private and protected members of a class from a function
outside the class.

Classes and objects

46

❖ More about classes

▪ Friend functions and classes

Classes and objects

47

❖ More about classes

▪ What can we also add to classes?

• Constant data members of objects

Classes and objects

48

❖ More about classes

▪ What can we also add to classes?

• Reference type data members

Classes and objects

49

❖ More about classes

▪ What can we also add to classes?

• Data members as objects

Classes and objects

50

❖ More about classes

▪ What can we also add to classes?

• Pointers to class members

class Class; forward class declaration,

int Class::*p;
p is a pointer to a data member of
type int,

void
(Class::*pf unct)(int);

pfunct may point to a member function
that is called with an argument of
type int and that returns no value.

In order to define pointers correctly, we have to use the name of
the class and the scope operator:

Classes and objects

51

❖ More about classes

▪ What can we also add to classes?

• Pointers to class members

Classes and objects

52

❖ More about classes

▪ What can we also add to classes?

• Pointers to class members

By using typedef, expressions containing pointers are easier to
be handled:

Classes and objects

53

❖ From structures to classes

❖ More about classes

❖ Operator overloading

Classes and objects

[] () . -> ++ -- & new

* + - ~ ! / % new[]

<< >> < > <= >= == delete

!= ^ | && || = *= delete[]

/= %= += -= <<= >>= &=

^= |= , ->* 54

❖ Operator overloading

• An operator function can be used if one of its parameters is a
class of type class or struct. General declaration of operator
functions:

Where the sequence op can be replaced by any of the following
operators:

Classes and objects

55

❖ Operator overloading

• The following operators cannot be overloaded : member
selection (.), indirect member selection (.*), scope (::),
conditional (?:) and the operators sizeof and typeid since their
overloading would result in undesired side effects.

• The assignment (=), the "address of" (&) and the comma (,)
operations can be applied to objects without overloading.

• Overloading operators does not result in modifying the operator
precedence and associativity, and it is not possible to introduce
new operations.

Classes and objects

56

❖ Operator overloading

▪ Creating operator functions

Expression Operator(♣) Member function External function

♣a
+ - * & ! ~

++ --
A::operator♣ () operator♣ (A)

a♣ ++ -- A::operator♣ (int) operator♣ (A, int)

a♣b
+ - * / % ^ &

| < > == != <=
>= << >> && || ,

A::operator♣ (B) operator♣ (A, B)

a♣b
= += -= *= /=

%= ^= &= |= <<=
>>= []

A::operator♣ (B) -

a(b, c...) () A::operator()(B, C...) -

a->b -> A::operator->() -

Classes and objects

57

❖ Operator overloading

▪ Creating operator functions

• The operators =, (), [] and -> can only be overloaded by non-
static member functions.

• The operators new and delete are overloaded with static
member functions.

• All other operator functions can be created as member functions
or external (in general friend) functions.

Classes and objects

58

❖ Operator overloading

▪ Creating operator functions

• Binary operands:

Realisation Syntax Actual call

member function X op Y X.operator op(Y)

external function X op Y operator op(X,Y)

Classes and objects

59

❖ Operator overloading

▪ Creating operator functions

• Unary operands:

Realisation Syntax Actual call

member function op X X.operator op()

member function X op X.operator op(0)

external function op X operator op(X)

external function X op operator op(X,0)

Classes and objects

60

❖ Operator overloading

▪ Creating operator functions

Classes and objects

61

❖ Operator overloading

▪ Creating operator functions

Classes and objects

62

❖ Operator overloading

▪ Creating operator functions

Classes and objects

63

❖ Operator overloading

▪ Using type conversion operator functions

Classes and objects

64

❖ Operator overloading

▪ Using type conversion operator functions

Classes and objects

65

❖ Operator overloading

▪ Extending classes with input/output operations

• To "teach" I/O data streams based on classes to handle the
objects of user-defined classes.

Classes and objects

66

❖ Operator overloading

▪ Extending classes with input/output operations

Classes and objects

67

❖ Operator overloading

▪ Extending classes with input/output operations

Classes and objects

❖ Introduction to the object-oriented world

❖ Classes and objects

❖ Inheritance (derivation)

❖ Polymorphism

❖ Class templates

68

Chapter III. Object-oriented programming in C++

69

Inheritance (derivation)

• Inheritance makes it possible to create (to derive) new classes
from already existing ones.

• Derivation means that a new class inherits the public and
protected properties (data members) and behaviour (member
functions) of already existing classes and it then uses them as its
own.

70

Inheritance (derivation)

• However:

➢ already existing classes may be extended with a new class,

➢ new data members and member functions may be defined

➢ or inherited member functions may be reinterpreted (replaced) if
they become deprecated concerning their functioning
(polymorphism).

71

• class A, that is derived or from which
members are inherited: base class , ancestor
class , parent class, superclass

• the operation: inheritance , derivation ,
extending, subclassing

• class B, the result of derivation: descendant
class, derived class, extended class, child
class, subclass

Inheritance (derivation)

72

The C++ program code that realises the relation
above:

class ClassA {
// ...

};

class ClassB : public ClassA {
// ...

};

Inheritance (derivation)

73

The multiple inheritance of I/O classes in C++

Inheritance (derivation)

74
Hierarchy of geometrical classes

Inheritance (derivation)

75

❖ Derivation of classes

❖ Initialising base class(es)

❖ Accessing class members in case of inheritance

❖ Virtual base classes in case of multiple inheritance

❖ Inheritance and/or composition?

Inheritance (derivation)

76

❖ Derivation of classes

• A derived (descendant) class is a class that inherits its data
members and member functions from one or more already
defined class(es).

• The class from which a derived class inherits is called base class
(ancestor class).

• A derived class inherits all the members of its base class;
however, it only have access to the public and protected
members of its base class as its own.

Inheritance (derivation)

77

❖ Derivation of classes

• The place where a derivation is indicated in a program code is
the class header where the mode of derivation (public,
protected, private) is indicated before the names of base classes:

Inheritance (derivation)

78

❖ Derivation of classes

Inheritance (derivation)

79

❖ Derivation of classes

Inheritance (derivation)

80

❖ Derivation of classes

• The keywords public, protected and private used in a derivation
list restrict the access of inherited (public and protected)
members in their new classes:

Mode of inheritance Access in the base class Access in the derived class

public
public

protected
public

protected

protected
public

protected
protected
protected

private
public

protected
private
private

Inheritance (derivation)

81

❖ Derivation of classes

• The access of any member (the access type of which is protected
or public in the base class) can be manually set directly.

Inheritance (derivation)

82

❖ Derivation of classes

❖ Initialising base class(es)

❖ Accessing class members in case of inheritance

❖ Virtual base classes in case of multiple inheritance

❖ Inheritance and/or composition?

Inheritance (derivation)

83

❖ Initialising base class(es)

• In order that base class(es) be initialised, it is the extended
version of member initialisation lists that is used.

Inheritance (derivation)

84

❖ Derivation of classes

❖ Initialising base class(es)

❖ Accessing class members in case of inheritance

❖ Virtual base classes in case of multiple inheritance

❖ Inheritance and/or composition?

Inheritance (derivation)

85

❖ Accessing class members in case of inheritance

▪ Accessing inherited members

Inheritance (derivation)

86

❖ Accessing class members in case of inheritance

▪ Accessing inherited members

The members of the base
class Point2D:

The members of the derived class
Point3D

protected: x, y

public: Point2D(),

GetPoint2D(), Move(int…),
Move(const…), PrintOut()

protected: x, y, z

public: Point3D(int…),
Point3D(Point3D&…),

GetPoint2D(),Point2D()::Move(int…),
Point2D()::Move(const…),
Point2D()::PrintOut(), GetPoint3D(),
Move(int…), Move(const…), PrintOut()

Inheritance (derivation)

87

❖ Accessing class members in case of inheritance

▪ The friend relationship in inheritance

• In a derived class, a friend of the base class can only access the
members inherited from the base class.

• A "friend" of a derived class can only access public and
protected members from the base class.

Inheritance (derivation)

88

❖ Derivation of classes

❖ Initialising base class(es)

❖ Accessing class members in case of inheritance

❖ Virtual base classes in case of multiple inheritance

❖ Inheritance and/or composition?

Inheritance (derivation)

89

❖ Virtual base classes in case of multiple inheritance

• In case of multiple inheritance, it may be a problem if the same
base class appears as many instances in the derived class.

• If virtual base classes are used, problems of that type can be
avoided.

Inheritance (derivation)

90

❖ Virtual base classes in case of multiple inheritance

Using virtual base classes

Inheritance (derivation)

91

❖ Virtual base classes in case of multiple inheritance

Inheritance (derivation)

92

❖ Virtual base classes in case of multiple inheritance

Inheritance (derivation)

93

❖ Derivation of classes

❖ Initialising base class(es)

❖ Accessing class members in case of inheritance

❖ Virtual base classes in case of multiple inheritance

❖ Inheritance and/or composition?

Inheritance (derivation)

94

❖ Inheritance and/or composition?

• A big advantage of C++ programming language is that it supports
the reusability of program code.

• Reusing means that a new program code is made without
modifying the original one.

Inheritance (derivation)

95

❖ Inheritance and/or composition?

• If the object-oriented tools of C++ are used, there are three
approaches to choose from:

➢ The most simple and frequent reuse of a code stored in a given
class is when an object instance is created or when already
existing objects (cin , cout , string , STL etc.) are used in a
program.

Inheritance (derivation)

96

❖ Inheritance and/or composition?

➢ Another possibility is to place objects of other classes in our own
codes as member objects ➔ This method is called composition.
If the new object will only contain a pointer or a reference to
other objects, it is called an aggregation.

Inheritance (derivation)

97

❖ Inheritance and/or composition?

➢ The third solution: when a new class is created by public
derivation from other classes, then the relationship is of an is-
a type ➔ a derived object behaves exactly the same way as its
ancestor class.

Inheritance (derivation)

98

❖ Inheritance and/or composition?

Inheritance (derivation)

99

❖ Inheritance and/or composition?

▪ Reuse with composition

Inheritance (derivation)

100

❖ Inheritance and/or composition?

▪ Reuse by public inheritance

Inheritance (derivation)

❖ Introduction to the object-oriented world

❖ Classes and objects

❖ Inheritance (derivation)

❖ Polymorphism

❖ Class templates

101

Chapter III. Object-oriented programming in C++

102

Polymorphism

In C++, polymorphism rather means that the object of a derived
class is accessed by a pointer or a reference in the base class.

• Coercion polymorphism means implicit and explicit type casts.

➢ In that case, the polymorphism of a given operation is made
possible by different types that may be converted if needed.

• As an opposite to coercion, the so-called ad-hoc (“for that
purpose”) polymorphism is better known by the name of
function overloading.

➢ In that case, a compiler chooses the appropriate function from
the variants on the basis of parameter types.

103

Polymorphism

• The extended version of this polymorphism is called parametrical
or compile-time polymorphism, which makes it possible to execute
the same code with any type.

➢ In C++, parametric polymorphism is realised by function and
class templates. Using templates actually means reusing a C++
source code.

104

❖ Virtual member functions

❖ Redefining virtual functions

❖ Early and late binding

❖ Virtual destructors

❖ Abstract classes and interfaces

❖ Run-time type informations in case of classes

Polymorphism

105

❖ Virtual member functions

• A virtual function is a public or protected member function of
the base class.

• It can be redefined in the derived class in order that the behavior
of the class would change.

• A virtual function is generally called by a reference or a pointer
of a public base class, the actual value of which is determined at
run-time (dynamic binding, late binding).

• Declaration of the virtual function:

Polymorphism

106

❖ Virtual member functions

• It is not necessary that a virtual function in the base class have a
definition as well.

• Instead, the prototype of the function should be ended with the
expression = 0; .

• In that case, it is a so-called pure virtual function:

Polymorphism

107

❖ Virtual member functions

❖ Redefining virtual functions

❖ Early and late binding

❖ Virtual destructors

❖ Abstract classes and interfaces

❖ Run-time type informations in case of classes

Polymorphism

108

❖ Redefining virtual functions

Polymorphism

109

❖ Redefining virtual functions

Polymorphism

110

❖ Redefining virtual functions

Polymorphism

111

❖ Redefining virtual functions

• Virtual functions and public inheritance make it possible to create
external functions that can be called by every object in the class
hierarchy:

Polymorphism

112

❖ Virtual member functions

❖ Redefining virtual functions

❖ Early and late binding

❖ Virtual destructors

❖ Abstract classes and interfaces

❖ Run-time type informations in case of classes

Polymorphism

113

❖ Early and late binding

▪ Static early binding

• During early binding, compilers integrate statically direct
member function calls into the code.

Early binding example

Polymorphism

114

❖ Early and late binding

▪ Static early binding

Polymorphism

115

❖ Early and late binding

▪ Dynamic late binding

Late binding example

Polymorphism

116

❖ Early and late binding

▪ Dynamic late binding

Polymorphism

117

❖ Early and late binding

▪ Virtual method table

• In case a class has one or more virtual member functions,
compilers complete the object with a "virtual pointer" to the
global data table called virtual method table (VMT) or virtual
function table (VFTable).

• VMT contains function pointers to the virtual member functions
redefined the last of the given class and the base classes.

• VMTs for classes are created at run-time when the first
constructor is called.

Polymorphism

118

❖ Early and late binding

▪ Virtual method table

Virtual method tables of the example code

Polymorphism

119

❖ Virtual member functions

❖ Redefining virtual functions

❖ Early and late binding

❖ Virtual destructors

❖ Abstract classes and interfaces

❖ Run-time type informations in case of classes

Polymorphism

120

❖ Virtual destructors

Polymorphism

121

❖ Virtual member functions

❖ Redefining virtual functions

❖ Early and late binding

❖ Virtual destructors

❖ Abstract classes and interfaces

❖ Run-time type informations in case of classes

Polymorphism

122

❖ Abstract classes and interfaces

Polymorphism

123

❖ Abstract classes and interfaces

Polymorphism

124

❖ Virtual member functions

❖ Redefining virtual functions

❖ Early and late binding

❖ Virtual destructors

❖ Abstract classes and interfaces

❖ Run-time type informations in case of classes

Polymorphism

125

❖ Run-time type informations in case of classes

Polymorphism

126

❖ Run-time type informations in case of classes

Polymorphism

127

❖ Run-time type informations in case of classes

Polymorphism

128

❖ Run-time type informations in case of classes

Polymorphism

129

❖ Run-time type informations in case of classes

• The version of the code above that does not use run-time type
information

Polymorphism

130

❖ Run-time type informations in case of classes

• Result

Polymorphism

❖ Introduction to the object-oriented world

❖ Classes and objects

❖ Inheritance (derivation)

❖ Polymorphism

❖ Class templates

131

Chapter III. Object-oriented programming in C++

132

❖ A step-be-step tutorial for creating and using class templates

❖ Defining a generic class

❖ Instantiation and specialisation

❖ Value parameters and default template parameters

❖ The "friends" and static data members of a class template

❖ The Standard Template Library (STL) of C++

Class templates

133

❖ A step-be-step tutorial for creating and using class templates

• A simplified class handling an one-dimensional integer array of
32 elements with bound index checking

Class templates

134

❖ A step-be-step tutorial for creating and using class templates

• A class template

Class templates

135

❖ A step-be-step tutorial for creating and using class templates

• In the case of external member functions, the name of the class
has to be used together with the generic type and the parameter
Array<type, numberOfElements>:

Class templates

136

❖ A step-be-step tutorial for creating and using class templates

• let's see how a class template can help us

• The template created from that can be used also for storing
character sequences and objects.

Class templates

137

❖ A step-be-step tutorial for creating and using class templates

•

Class templates

138

❖ A step-be-step tutorial for creating and using class templates

❖ Defining a generic class

❖ Instantiation and specialisation

❖ Value parameters and default template parameters

❖ The "friends" and static data members of a class template

❖ The Standard Template Library (STL) of C++

Class templates

139

❖ Defining a generic class

• A parametrized or generic class makes it possible for us to use
the parametrized class as a template to create new classes.

➢ So a given class definition can be used for all types.

Class templates

140

❖ Defining a generic class

• The non-inline member functions of the class should be defined
as follows:

Class templates

141

❖ Defining a generic class

Class templates

142

❖ Defining a generic class

• The same Point class becomes much more complicated if one
part of its member functions is defined outside the class:

Class templates

143

❖ A step-be-step tutorial for creating and using class templates

❖ Defining a generic class

❖ Instantiation and specialisation

❖ Value parameters and default template parameters

❖ The "friends" and static data members of a class template

❖ The Standard Template Library (STL) of C++

Class templates

144

❖ Instantiation and specialisation

• A template can be defined in many ways.

➢ In implicit instantiation, type parameters are replaced by
concrete types. First the version of the given type of a class is
created (if it has not yet been created), then the object instance:

Class templates

145

❖ Instantiation and specialisation

• In explicit instantiation, the compiler is asked to create an
instance of the class by using the given types, so when the object
is being created, the class is ready to be used:

Class templates

146

❖ Instantiation and specialisation

• Among the following declarations:

➢ the first one is a general template,

➢ the second one is a version
tailored to pointers,

➢ the third is a version specialised
to void* pointers.

Class templates

147

❖ Instantiation and specialisation

Class templates

148

❖ Instantiation and specialisation

Class templates

149

❖ A step-be-step tutorial for creating and using class templates

❖ Defining a generic class

❖ Instantiation and specialisation

❖ Value parameters and default template parameters

❖ The "friends" and static data members of a class template

❖ The Standard Template Library (STL) of C++

Class templates

150

❖ Value parameters and default template parameters

• C++ supports default template parameters.

Class templates

151

❖ Value parameters and default template parameters

• Example

Class templates

152

❖ Value parameters and default template parameters

• Example

Class templates

153

❖ A step-be-step tutorial for creating and using class templates

❖ Defining a generic class

❖ Instantiation and specialisation

❖ Value parameters and default template parameters

❖ The "friends" and static data members of a class template

❖ The Standard Template Library (STL) of C++

Class templates

154

❖ The "friends" and static data members of a class template

• A class template may also have friends, which may behave
differently.

Class templates

155

❖ The "friends" and static data members of a class template

Class templates

156

❖ The "friends" and static data members of a class template

Class templates

157

❖ A step-be-step tutorial for creating and using class templates

❖ Defining a generic class

❖ Instantiation and specialisation

❖ Value parameters and default template parameters

❖ The "friends" and static data members of a class template

❖ The Standard Template Library (STL) of C++

Class templates

158

❖ The Standard Template Library (STL) of C++

▪ The structure of STL

The elements of the Library can be grouped into five groups:

• containers – data structures making it possible to store data in
memory (vector, list, map, set, deque, …)

• adaptors – higher-level data structures based on containers
(stack, queue, priority_queue)

• algorithms - operations that can be carried out on data stored in
containers (sort, copy, search, min, max, …)

Class templates

159

❖ The Standard Template Library (STL) of C++

▪ The structure of STL

The elements of the Library can be grouped into five groups:

• iterators – generic pointers that ensure access to the data stored
in containers (iterator, const_iterator, ostream_iterator<>, …)

• function objects – functions are covered by classes, for other
components (divides, greater_equal, logical_and, …).

Class templates

160

❖ The Standard Template Library (STL) of C++

▪ The structure of STL

Short description Header file

Managing, sorting data in containers and searching in them <algorithm>

Associative container for storing bits: bitset <bitset>

Associative containers that store elements: multiset (may have the same
elements more times), and set (stores only unique elements)

<set>

Associative container storing key/value pairs in a 1:1 relation (map), or in a
1:n relation (multiset)

<map>

Predefined iterators, datastream iterators <iterator>

Container: dynamic array <vector>

Container: double ended queue <deque>

Container: linear list <list>

Container adaptor: queue <queue>

Container adaptor: stack <stack>

Class templates

161

❖ The Standard Template Library (STL) of C++

▪ STL and C++ arrays

Class templates

162

❖ The Standard Template Library (STL) of C++

▪ STL and C++ arrays

Class templates

163

❖ The Standard Template Library (STL) of C++

▪ Using STL containers

Class templates

164

❖ The Standard Template Library (STL) of C++

▪ Using STL container adaptors

• The adapted stack functions are summarised in the following
table:

void push(const value_type& a) inserting in the stack,

void pop() removing the top element of the stack,

value_type& top() accessing the top element of the stack,

const value_type& top() const accessing the top element of the stack,

bool empty() const returns true, if the stack is empty,

size_type size()const the number of elements in the stack,

operator== and operator<
the operations "equals" and "smaller
than".

Class templates

165

❖ The Standard Template Library (STL) of C++

▪ Using STL container adaptors

Class templates

KỸ THUẬT LẬP TRÌNH HỆ CƠ ĐIỆN TỬ

Programming Engineering in Mechatronics

1

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Giảng viên: TS. Nguyễn Thành Hùng

Đơn vị: Bộ môn Cơ điện tử, Viện Cơ khí

Hà Nội, 2018

2

Chapter IV. Graphical User Interface in C++/CLI

❖ 1. Specialties of CLI, standard C++ and C++/CLI

❖ 2. The window model and the basic controls

❖ 3. Text and binary files, data streams

❖ 4. The GDI+

3

Specialties of CLI, standard C++ and C++/CLI

There are several ways to develop applications for a computer running the

Windows operating system:

• We implement the application with the help of a development kit and it will operate
within this run-time environment. The file cannot be run directly by the operating
system (e.g. MatLab, LabView) because it contains commands for the run-time
environment and not for the CPU of the computer. Sometimes there is a pure run-time
environment also available beside the development kit for the use of the application
developed, or an executable (exe) file is created from our program, which includes the
run-time needed for running the program.

• The development kit prepares a stand-alone executable application file (exe), which
contains the commands written in machine code runnable on the given operating
system and processor (native code). This file is run while developing and testing the
program. Such tools are e.g. Borland Delphi and Microsoft Visual Studio, frequently
used in industry.

4

Specialties of CLI, standard C++ and C++/CLI

1.1. Compiling and running native code under Windows

1.2. Problems during developing and using programs in native code

1.3. Platform independence

1.4. Running MSIL code

1.5. Integrated development environment

1.6. Controllers, visual programming

1.7. The .NET framework

1.8. C#

1.9. Extension of C++ to CLI

1.10. Extended data types of C++/CLI

5

Specialties of CLI, standard C++ and C++/CLI

1.11. The predefined reference class: String

1.12. The System::Convert static class

1.13. The reference class of the array implemented with the CLI
array template

1.14. C++/CLI: Practical realization in e.g. in the Visual Studio 2008

1.15. The Intellisense embedded help

1.16. Setting the type of a CLR program.

6

❖ 1.1. Compiling and running native code under Windows

The process of compliation is the following:

• C++ sources are stored in files with the extension .cpp, headers in files with the
extension .h. There can be more than one of them, if the program parts that logically
belong together are placed separately in files, or the program has been developed by
more than one person.

• Preprocessor: resolving #define macros, inserting #include files into the source.

• Preprocessed C source: it contains all the necessary function definitions.

• C compiler: it creates an .OBJ object file from the preprocessed sources.

• OBJ files: they contain machine code parts (making their names public – export) and
external references to parts in other files.

• Linker: after having resolved references in OBJ files and files with the extension .LIB
that contain precompiled functions (e.g. printf()), having cleaned the unnecessary
functions and having specified the entry point (function main()), the runnable file with
the extension .EXE is created, which contains the statements in machine code
runnable on the given processor.

Specialties of CLI, standard C++ and C++/CLI

7

❖ 1.2. Problems during developing and using programs in native
code

Specialties of CLI, standard C++ and C++/CLI

The memory before cleaning The memory after cleaning

8

❖ 1.3. Platform independence

• CPUs made by many manufacturers (Intel, ARM, MIPS, etc.)

• The 32 bits and 64 bits operating system

• Operating system: Windows (XP, Vista, 7, 8, 10), Linux, Unix, Mac OS, Android, …

Specialties of CLI, standard C++ and C++/CLI

9

❖ 1.4. Running MSIL code

The CIL (Common Intermediate Language) code is transformed into a file with .EXE
extension, where it is runable. But this code is not the native code of the processor, so the
operating system must recognize that one more step is necessary. This step can be done in
two ways, according to the principles used in Java system:

• interpreting and running the statements one by one. This method is called JIT (Just In
Time) execution. Its use is recommended for the step by step running of the source
code and for debug including break points.

• generating native code from all statements at the same time and starting it. This
method is called AOT (Ahead of Time), and it can be created by the Native Image
Generator (NGEN). We use it in the case of well functioning, tested, ready programs
(release).

Specialties of CLI, standard C++ and C++/CLI

10

❖ 1.5. Integrated development environment

• The integrated development environment (IDE) includes a text editor, a compiler and a
runner in one program.

Specialties of CLI, standard C++ and C++/CLI

11

❖ 1.6. Controllers, visual programming

Applications that run on operating systems with a graphical user interface (GUI) consist of
two parts at least:

• The code part that contains the algorithm of the program

• The interface that implements the user interface (UI)

The two parts are logically linked: events (event) happening in the user interface trigger the
run of the defined subprograms of the algorithm part (these subprograms are
called functions in C type languages). Hence these functions are called “event handler
functions”

Specialties of CLI, standard C++ and C++/CLI

12

❖ 1.7. The .NET framework

Parts of the framework:

• Common Language Infrastructure (CLI), and its realization the Common Language
Runtime (CLR): the common language compiler and run-time environment.

• Base Class Library: the library of the basic classes.

• WinForms: controls preprepared for the Windows applications, inherited from the
Base Class Library.

• Additional parts: these could be the ASP.NET system that supports application
development on the web, the ADO.NET that allows access to databases and Task
Parallel Library that supports multiprocessor systems.

Specialties of CLI, standard C++ and C++/CLI

13

❖ 1.8. C#

• The .NET framework and the pure managed code can be programmed with C# easily.

• It is recommended to amateurs and students in higher education (not for
programmers – their universal tools are the languages K&R C and C++).

• The .NET framework contains a command line C# compiler and we can also download
freely the Visual C# Express Edition from Microsoft.

• Their goal with this is to spread C# (and .NET).

Specialties of CLI, standard C++ and C++/CLI

14

❖ 1.9. Extension of C++ to CLI

• The C++ compiler developed by Microsoft can be considered as a standard C++ as long
as it is used to compile a native win32 application.

• However, in order to reach CLI new data types and operations were needed.

• The defined language cannot be considered as C++ because the statements and data
types of MC do not fit in C++ standard definition.

• The language was called C++/CLI and it was standardized (ECMA-372).

Specialties of CLI, standard C++ and C++/CLI

15

❖ 1.10. Extended data types of C++/CLI

• In C++ the class on the managed heap is called reference class (ref class).

The reference class behaves differently compared to the C++ class:

• Static samples do not exist, only dynamic ones

• It is not pointer that points to it but handle (handler) and its sign is ^. Handle has
pointer like features, for instance the sign of a reference to a member function is ->.
Correct declaration is String ^text; in this case the text does not have any content yet
given that its default constructor creates an empty, string with length of 0 (“”).

• When creating we do not use the new operator but the gcnew. An
example: text=gcnew String(""); creation of a string with length of 0 with a constructor.
Here we do not have to use the ^ sign, its usage would be wrong.

• Its deletion is not handled by using the delete operator but by giving a value of
handle nullptr. After a while the garbage collector will free up the used space
automatically. An example: text=nullptr; delete can be used as well, it will call the
destructor but the object will stay in the memory.

Specialties of CLI, standard C++ and C++/CLI

16

❖ 1.10. Extended data types of C++/CLI

The reference class behaves differently compared to the C++ class:

• It can be inherited only publicly and only from one parent (multiple inheritances are
possible only with an interface class).

• There is the option to create an interior pointer to the reference class that is initiated
by the garbage collector. This way, however, we loose the security advantages of the
managed code (e.g preventing memory overrun).

• The reference class – similarly to the native one – can have data members, methods,
constructors (with overloading). We can create properties (property) that contain the
data in themselves (trivial property) or contain functions (scalar property) to reach the
data after checking (e.g. the age cannot be set as to be a negative number). Property
can be virtual as well or multidimensional, in the latest case it will have an index as
well. Big advantage of property is that it does not have parenthesis, compared to a
native C++ function that is used to reach member data. An example: int length=text-
>Length; the Length a read only property gives the number of the characters in the
string.

Specialties of CLI, standard C++ and C++/CLI

17

❖ 1.10. Extended data types of C++/CLI

The reference class behaves differently compared to the C++ class:

• Beside the destructor that runs when deleting the class (and for this it can be called
deterministic) can contain a finalizer() method which is called by the GC (garbage
collector) when cleaning the object from the memory. We do not know when GC calls
the finalizer that is why we can call it non-deterministic.

• The abstract and the override keywords must be specified in each case when the
parent contains virtual method or property.

• All data and methods will be private if we do not specify any access modifier.

• If the virtual function does not have phrasing, it has to be declared as abstract: virtual
type functionname() abstract; or virtual type functionname() =0; (the =0 is the
standard C++. the abstract is defined as =0). It is mandatory to override it in the child.
If we do not want to override the (not purely) virtual method, then we can create a
new one with the new keyword.

Specialties of CLI, standard C++ and C++/CLI

18

❖ 1.10. Extended data types of C++/CLI

The reference class behaves differently compared to the C++ class:

• It can be set at the reference class that no new class could be created from it with
inheritance (with overriding the methods), and it could be only instantiated. In this
case the class is defined as sealed. The compiler contains a lot of predefined classes
that could not be modified e.g. the already mentioned String class.

• We can create an Interface class type for multiple inheritances. Instead of reference
we can write an interface class/struct (their meaning is the same at the interface). The
access to all the members of the interface (data members, methods, events,
properties) is automatically public. Methods and properties cannot be expanded
(mandatorily abstract), while data can only be static. Constructors cannot be defined
either. The interface cannot be instantiated, only ref/value class/struct can be created
from it with inheritance. Another interface can be inherited from an interface. A
derived reference class (ref class) can have any interface as base class. The interface
class is usually used on the top of the class hierarchy, for example the Object class that
is inherited by almost all.

Specialties of CLI, standard C++ and C++/CLI

19

❖ 1.10. Extended data types of C++/CLI

The reference class behaves differently compared to the C++ class:

• We can use value class to store data. What refers to it is not a handle but it is a static
class type (that is, a simple unspecified variable). It can be derived from an interface
class (or it can be defined locally without inheritance).

• Beside function pointers we can define a delegate also to the methods of a (reference)
class that appears as a procedure that can be used independently. This procedure is
secured, and errors are not faced that cause a mix up of the types and is possible with
pointers of a native code. Delegate is applied by the .NET system to set and call the
event handler methods, that belong to the events of the controls.

Specialties of CLI, standard C++ and C++/CLI

20

❖ 1.10. Extended data types of C++/CLI

Specialties of CLI, standard C++ and C++/CLI

Operation K&R C C++
Managed C++
(VS 2002)

C++/CLI (VS
2005-)

Memory
allocation for
the object
(dynamic
variable)

malloc(…),
calloc()

new … _gc new ... gcnew ...

Memory
unallocation

free(...) delete ...
Automatic,
after ...=nullptr
GC::Collect()

<- similarly as
in 2002

Referring to an
object

Pointer (*) Pointer (*)

_nogc Pointer:
to native data,
_gc Pointer: to
managed data

Pointer (*): to
native data,
Handle (^): to
managed data

21

❖ 1.11. The predefined reference class: String

• The System::String class was created on the basis of C++ string type in order to store
text.

• The text is stored with the series of Unicode characters (wchar_t).

• Its default constructor creates a 0 length (“”) text.

• Its other constructors allow that we create it from char*, native string, wchar_t* or
from an array that consists of strings.

• String is a reference class, we create a handle (^) to it and we can reach its properties
and methods with ->. Properties and methods that are often used:

o String->Length length. An example: s=”ittykitty”; int i=s->Length; after the value
of i will be 9

o String[ordinal number] character (0.. as by arrays). An example: value of s[1] will be
the ‘t’ character.

Specialties of CLI, standard C++ and C++/CLI

22

❖ 1.11. The predefined reference class: String

• String is a reference class, we create a handle (^) to it and we can reach its properties
and methods with ->. Properties and methods that are often used:

o String->Substring(from which ordinal number, how many) copying a part. An example:
the value of s->Substring(1,3) will be ”tty”.

o String->Split(delimiter) : it separates the string with the delimiter to the array of words
that are contained in it. An example: s=”12;34”; t=s->Split(‘;’); after t a 2 element array
that contains strings (the string array has to be declared). The 0. its element is “12”,
and the 1. its elements is “34”.

o in what -> IndexOf(what) search. We get a number, the initiating position of the what
parameter in the original string (starting with 0 as an array index). If the part was not
found, it returns -1. Note that it will not be 0 because 0 is a valid character position. As
an example: with the s is “ittykitty”, the value of s->IndexOf(“ki”) will be 4, but the
value of s->IndexOf(“dog”) will be -1.

Specialties of CLI, standard C++ and C++/CLI

23

❖ 1.11. The predefined reference class: String

• String is a reference class, we create a handle (^) to it and we can reach its properties
and methods with ->. Properties and methods that are often used:

o Standard operators are defined: ==, !=, +, +=. By native (char*) strings the comparing
operator (==) checks whether the two pointers are equal, and it does not check the
equality of their content. When using String type the == operator checks the equality
of the contents using operator overloading. Similarly, the addition operator means
concatenation. As an example: the value of s+”, hey” will be “ittykitty, hey”.

o String->ToString() exists as well because of inheritance. It does not have any pratical
importance since it returns the original string. On the other hand, there is no method
that converts to a native string (char*). Let us see a function as an example that
performs this conversion:

Specialties of CLI, standard C++ and C++/CLI

24

❖ 1.11. The predefined reference class: String

Specialties of CLI, standard C++ and C++/CLI

25

❖ 1.12. The System::Convert static class

• The System namespace contains a class called Convert. The Convert class has
numerous overloaded static methods, which help the data conversion tasks.

• For performing the most common text <-> number conversions the
Convert::ToString(NumericType) and the Convert::ToNumericType(String) methods are
defined.

Specialties of CLI, standard C++ and C++/CLI

• The Convert class, however, performs the real <-> string conversion according to the
region and language settings (CultureInfo). The CultureInfo can be set for the current
program, if for example we got a text file that contains real numbers in English format.

26

❖ 1.12. The System::Convert static class

• The methods of the Convert class can appear also in the methods of the data class. For
example the instance created by the Int32 class has a ToString() method to convert to
a string and a Parse() method to convert from a string. These methods can be
parameterized in several ways. We often use hexadecimal numbers in
computer/hardware related programs.

Specialties of CLI, standard C++ and C++/CLI

27

❖ 1.13. The reference class of the array implemented with the CLI
array template

• Declaration: cli::array<type, dimension=1>^ arrayname, the dimension is optional; in
this case its value is 1. The ^ is the sign of the ref class, the cli:: is also omissible, if we
use at the beginning of our file the using namespace cli; statement.

• We have to allocate space for the array with the gcnew operator before using – since it
is a reference class when declaring a variable only the handle is created, and it is not
pointing to anywhere. We can make the allocation in the declaration statement as
well: we can list the elements of the array between { } as used in C++.

• Array’s property: Length gives the number of elements of the onedimensional array.
For arrays passed to a function we do not have to pass the size, like in the basic C. The
size can be used in the loop statement, which does not address out from the array:

Specialties of CLI, standard C++ and C++/CLI

28

❖ 1.13. The reference class of the array implemented with the CLI
array template

For the basic array algorithms static methods were created, and those are stored in
the System::Array class:

• Clear(array, from where, how many) deletion. The value of the array elements will be
0, false, null, nullptr (depending on the base type of the array),

• Resize(array, new size) in case of resizing (expanding) after the old elements it fills the
array with the values used with Clear().

• Sort(array) sorting the elements of the array. It can be used by default to order
numerical data in ascendant order. We can set keys and a comparing function to sort
any type data.

• CopyTo(target array, starting index) copying elements. Note: the = operator duplicates
the reference only. If an element of the array is changed, this changed element is
reached using the other reference as well. Similarly, the == oparetor that the two
references are the same but it does not compare the elements themselves.

Specialties of CLI, standard C++ and C++/CLI

29

❖ 1.13. The reference class of the array implemented with the CLI
array template

Specialties of CLI, standard C++ and C++/CLI

30

❖ C++/CLI: Practical realization in e.g. in the Visual Studio 2017

• Select Visual C++ CLR and CLR Empty Project and type in WindowsFormApplication
for the project name. The, OK.

• Project->Add New Item... .
Select UI under Visual C++.
Leave the Form name as given by default MyForm.h.
Then, click Add.

Specialties of CLI, standard C++ and C++/CLI

31

❖ C++/CLI: Practical realization in e.g. in the Visual Studio 2017

• We need to edit the MyForm.cpp file:

Specialties of CLI, standard C++ and C++/CLI

32

❖ C++/CLI: Practical realization in e.g. in the Visual Studio 2017

The System namespace provides functions to work with UI controls.

• At the right-mouse click on WindowsFormApplication, we get
the Properties window.
Configuration Properties->Linker->System
Select Windows (/SUBSYSTEM:WINDOWS) for SubSystem.
Advanced->Entry Point, type in main.
The, hit OK.

• Hit F5, then we will have to run result, the Form.

•

Specialties of CLI, standard C++ and C++/CLI

33

❖ C++/CLI: Practical realization in e.g. in the Visual Studio 2017

• Using the “View/Designer” menuitem, we can select the graphical editor, while with
the “View/Code” menuitem the source program.

Specialties of CLI, standard C++ and C++/CLI

34

❖ C++/CLI: Practical realization in e.g. in the Visual Studio 2017

• Selecting the “View/Designer” menuitem we will need the Toolbox where the
additional controls can be found (the toolbox contains additional elements only in
designer state). In case it is not visible we can set it back with the “View/Toolbox”
menuitem.

Specialties of CLI, standard C++ and C++/CLI

The Toolbox

35

❖ C++/CLI: Practical realization in e.g. in the Visual Studio 2017

• After selecting the control and with right mouse click we can achieve the setting in the
window, opened with the “Properties” menuitem. It is important to note that these
settings refer to the currently selected control and the properties windows of the
certain controls differ from each other. On the next figure we select the “Properties”
window of the label1 control:

Specialties of CLI, standard C++ and C++/CLI

The Properties Window

36

❖ C++/CLI: Practical realization in e.g. in the Visual Studio 2017

• The same window serves for selecting the event handlers. We have to click on the blitz
icon () to define the event handlers. In this case all the reacting options will appear
that are possible for all the events of the given control. In case the right side of the list
is empty then the control will not react to that event.

Specialties of CLI, standard C++ and C++/CLI

The Event handlers

37

❖ 1.15. The Intellisense embedded help

Specialties of CLI, standard C++ and C++/CLI

The Intellisense window

38

❖ 1.16. Setting the type of a CLR program

Specialties of CLI, standard C++ and C++/CLI

Solution Explorer menu

Project properties

39

❖ 1.16. Setting the type of a CLR program

• "No common Language Runtime Support" – there is no managed code. It is the same if
we create a Win32 console application or a native Win32 project. With this setting it is
not capable of compiling the parts of the .NET system (handles, garbage collector,
reference classes, assemblies).

• "Common Language Runtime Support" – there is native and managed code compiling
as well. With this setting we can create mixed mode programs, that is, if we started to
develop our program with the default window settings and we would like to use native
code data and functions, then we have to set the drop down menu to this item.

• "Pure MSIL Common Language Runtime Support" – purely managed code compiling.
The default setting of programs created from the “Windows Form Application”. This is
the only possible setting of C# compiler. Note: this code type can contain native code
data that we can reach through managed code programs.

Specialties of CLI, standard C++ and C++/CLI

40

❖ 1.16. Setting the type of a CLR program

• "Safe MSIL Common Language Runtime Support" – it is similar to the previous

one but it cannot contain native code data either and it allows the security
check of the CRL code with a tool created for this purpose (peverify.exe)

• "Common Language Runtime Support, Old Syntax" – this also creates a mixed code
program but with Visual Studio 2002 syntax. (_gc new instead of gcnew). This setting
was kept to ensure compatibility with older versions, however, it is not recommended
to be used.

Specialties of CLI, standard C++ and C++/CLI

41

Chapter IV. Graphical User Interface in C++/CLI

❖ 1. Specialties of CLI, standard C++ and C++/CLI

❖ 2. The window model and the basic controls

❖ 3. Text and binary files, data streams

❖ 4. The GDI+

42

2.1. The Form basic controller

2.2. Often used properties of the Form control

2.3. Events of the Form control

2.4. Updating the status of controls

2.5. Basic controls: Label control

2.6. Basic controls: TextBox control

2.7. Basic controls: Button control

2.8. Controls used for logical values: CheckBox

2.9. Controls used for logical values: RadioButton

2.10. Container object control: GroupBox

2. The window model and the basic controls

43

2.11. Controls inputting discrete values: HscrollBar and VscrollBar

2.12. Control inputting integer numbers: NumericUpDown

2.13. Controls with the ability to choose from several objects:
ListBox and ComboBox

2.14. Control showing the status of progressing: ProgressBar

2.15. Control with the ability to visualize PixelGrapic images:
PictureBox

2.16. Menu bar at the top of our window: MenuStrip control

2.17. The ContextMenuStrip control which is invisible in basic
mode

2.18. The menu bar of the toolkit: the control ToolStrip

2. The window model and the basic controls

44

2.19. The status bar appearing at the bottom of the window, the
StatusStrip control

2.20. Dialog windows helping file usage: OpenFileDialog,
SaveFileDialog and FolderBrowserDialog

2.21. The predefined message window: MessageBox

2.22. Control used for timing: Timer

2.23. SerialPort

2. The window model and the basic controls

45

❖ 2.1. The Form basic controller

2. The window model and the basic controls

46

❖ 2.2. Often used properties of the Form control

• Text – title of the form. This property can be found at each control that contains text
(as well).

• Size – the size of the form, by default in pixels. It contains the Width and Height
properties that are directly accessible. Also the visible controls have these properties.

• BackColor – color of the background. By default it has the same color as the
background of the controls defined in the system
(System::Drawing::SystemColors::Control). This property will be important if we would
like to delete the graphics on the form because deletion means filling with a color.

• ControlBox – the system menu of the window (minimalizer, maximalizer buttons and
windows menu on the left side). It can be enabled (by default) and disabled.

• FormBorderStyle – We can set here whether our window can be resized or it should
have a fix size or whether it had a frame or not.

2. The window model and the basic controls

47

❖ 2.2. Often used properties of the Form control

• Locked – we can prohibit resizing and movement of the window with the help of this.

• AutoSize – the window is able to change its size aligning to its content

• StartPosition – when starting the program where should the form appear on the
Windows desktop. Its application: if we use a multiscreen environment, then we can
set the x,y coordinates of the second screen, our program will be lunched there then.
It is useful to set this property in a conditional statement because in case the program
is lunched in one screen only the form will not be visible.

• WindowState – we can set here whether our program would be a window (Normal),
whether it would run full screen (Maximized) or whether it would run in the
background (Minimized). Of course, like any of the other properties, it is reachable
during run-time as well, that is, if the program lunched in the small window would like
to maximalize itself (for example because it would like to show many things) then we
have an option for this setting as well: this-
>WindowState=FormWindowState::Maximized;

2. The window model and the basic controls

48

❖ 2.3. Events of the Form control

• Load – a program part that appears when starting the program before displaying it.

2. The window model and the basic controls

49

❖ 2.3. Events of the Form control

• In case we find in this function that running of the program does not make sense (we
would process a file but we could not find it, we would like to communicate with a
hardware but we could not find it, we would like to use the Internet but we do not
have connection etc.) then after displaying a window of an error message we can
leave the program. Here comes a hardware example:

2. The window model and the basic controls

50

❖ 2.3. Events of the Form control

• Resize – An event handler that runs when resizing our form (minimalizing,
maximalizing, setting it to its normal size could be also considered here). It runs when
loading the program, this way the increase of the form size from the previous example
could have been mentioned here as well, and in this case the form could not be
resized to smaller in order to ensure the visibility of our controls. In case we have a
graphic which size depens on the window size, then we can resize it here.

• Paint – the form has to be repainted.

• MouseClick, MouseDoubleClick – we click once or we double click on the Form with
the mouse. In case we have other controls on the form then this event runs if we do
not click on neither of the controls just on the empty area. In one of the arguments of
the event handler we got the handle to the reference class

2. The window model and the basic controls

51

❖ 2.3. Events of the Form control

• MouseDown, MouseUp – we clicked or released one of the mouse buttons on the
Form.The Button propety of the MouseEventArgs contains which button was clicked or
released. The next program part saves the coordinates of the clicks into a file, this way
for example we can create a very basic drawing program:

2. The window model and the basic controls

52

❖ 2.3. Events of the Form control

• MouseMove: - the function running when moving the mouse. It works independently
from the buttons of the mouse. In case our mouse is moved over the form, its
coordinates can be read. The next program part displays these coordinates in the title
of the window (that is, in the Text property), of course after the needed conversions:

2. The window model and the basic controls

53

❖ 2.3. Events of the Form control

• FormClosing – our program got a Terminate() Windows message for some reason. The
source of the message could be anything: the program itself with Application::Exit(),
the user with clicking on the “close window”, or the user with the Alt+F4 key
combination, we are before stopping the operating system etc. When this function
runs the Form is closed, its window disappears, resources used by it will be
unallocated. In case our program decides that this is not possible yet, the program
stop can be avoided by setting the Cancel member of the event’s parameter to true,
and the program will run further. The operating system however, if we would like to
prevent it from stopping, it will close our program after a while. In the next example
the program let itself to be closed only after a question appearing in a dialog window:

2. The window model and the basic controls

54

❖ 2.3. Events of the Form control

• FormClosed – our program is already in the last step of closure process, the window
do not exist anymore. There is no way back from here, this is the last event.

2. The window model and the basic controls

55

❖ 2.4. Updating the status of controls

2. The window model and the basic controls

56

❖ 2.5. Basic controls: Label control

• The simplest control is the Label which displays text. It’s String ^ type property
called Text includes the text to be displayed.

2. The window model and the basic controls

❖ 2.6. Basic controls: TextBox control

• TextBox control can be used for entering text (String^) (in case we need to enter
numbers, we use the same control, but in this case the processing starts with a
conversion). The Text property contains the text, which can be rewritten from the
program and the user can also change it while the program is running.

• TextBox has a default event as well: it is TextChanged, which runs after each and every
change (per character).

57

2. The window model and the basic controls

❖ 2.6. Basic controls: TextBox control

58

❖ 2.7. Basic controls: Button control

• Button control denotes a command button that “sags” when clicking on it. We use
command button(s) if the number of currently selectable functions are low.

2. The window model and the basic controls

❖ 2.8. Controls used for logical values: CheckBox

• Text property of the CheckBox control is the text (String^ type), written next to it. Its
bool type property is the Checked, which is true in case it is checked. CheckedState
property can take up three values: apart from ‘on’ and ‘off’ it has a third, middle value
as well, which can be set up only from the program, when it is running, however it is
considered to be checked. In case there are more CheckBoxes in a Form, these are
independent of each other: we can set any of them checked or unchecked. Its
event: CheckedChanged occurs when the value of the Checked property changes.

59

2. The window model and the basic controls

❖ 2.8. Controls used for logical values: CheckBox

60

❖ 2.9. Controls used for logical values: RadioButton

• RadioButton is a circular option button. It is similar to the CheckBox, but within one
container object (such as Form: we put other objects in it) only one of them can be
checked at the same time. It was named after the old radio containing waveband
switch: when one of the buttons was pressed, all the others were deactivated. When
one of the buttons is marked/activated by the circle (either by the program: Checked =
true, or by the user clicking on it), the previous button (and all the others) becomes
deactivated (its Checked property changes to false).

2. The window model and the basic controls

61

❖ 2.10. Container object control: GroupBox

• GroupBox is a rectangular frame with text (Text, String^ type) on its top left line. We
placed controls in it, which are framed. On the one hand, it is aesthetic, as the logically
related controls appear within one frame, on the other hand it is useful for
RadioButton type controls. Furthermore, controls appearing here can be moved and
removed with a single command by customizing the appropriate property of
GroupBox.

2. The window model and the basic controls

Part of the program’s window

62

❖ 2.11. Controls inputting discrete values: HscrollBar and
VscrollBar

• The two controls that are called scrollbars differ only in direction. They do not have
labels. In case we would like to indicate their end positions or their current status, we
can do this by using separate label controls. The current value, where the scrollbar is
standing, is the integer numerical value found in Value property. This value is located
between the values of Minimum and Maximum properties. The scrollbar can be set to
the Minimum property, this is its left/upper end position. However, for its right/lower
end position we have a formula, which includes the quick-change unit of the scrollbar,
called LargeChange property (the value changes this much, when we click on the
empty space with the mouse): Value_max=1+Maximum-LargeChange. LargeChange
and SmallChange are property values set by us. When moving the scrollbar a Change
event is running with the updated value.

2. The window model and the basic controls

63

❖ 2.11. Controls inputting discrete values: HscrollBar and
VscrollBar

2. The window model and the basic controls

64

❖ 2.12. Control inputting integer numbers: NumericUpDown

• With the help of NumericUpDown control we can enter an integer number. It will
appear in Value property, between the Minimum and Maximum values. The user can
increase and decrease the Value by 1, when clicking on the up and down arrows. All
the integer numbers between the Minimum and Maximum values appear among the
values to choose from. Event: ValueChanged is running after every change.

2. The window model and the basic controls

65

❖ 2.13. Controls with the ability to choose from several objects:
ListBox and ComboBox

• ListBox control offers an arbitrary list to be uploaded, from which the user can choose.
Beyond the list, ComboBox contains a TextBox as well, which can get the selected item
as well and the user is also free to type a string. This is the Text property of ComboBox.
The control’s list property is called Items, which can be upgraded by using Add()
method and can be read indexed. SelectedIndex points the current item. Whenever
selection changes, SelectedIndexChanged event is running. ComboBox control is used
by several controls implementing more complex functions: for example
OpenFileDialog.

2. The window model and the basic controls

66

❖ 2.14. Control showing the status of progressing: ProgressBar

• With the help of ProgressBar we can give information about the status of the process,
how much is still left, the program has not frozen, it is working. We have to know in
advance when the process will be ready, when it should reach the maximum. The
control’s properties are similar to HScrollBar, however the values cannot be modified
with the help of the mouse. Certain Windows versions animate the control even if it
shows a constant value. Practically, this control used to be placed in the StatusStrip in
the bottom left corner of our window. When clicking on it, its Click event is running,
however, it is something we normally do not deal with.

2. The window model and the basic controls

67

❖ 2.15. Control with the ability to visualize PixelGrapic images:
PictureBox

• This control has the ability to visualize an image. Its Image property contains the
reference of the Bitmap to be visualized. Height and Width properties show its size,
while Left and Top properties give its distance from the left side and top of the
window measured in pixels. It is practical to have the size of the PictureBox exactly the
same as the size of the Bitmap to be visualized (which can be loaded from almost all
kinds of image files) in order to avoid resizing.

• The SizeMode property contains the info about what to do if you need to resize the
image: in case of Normal value, there is no resizing, the image is placed to the left top
corner. If Bitmap is larger, the extra part will not be displayed. In case
of StretchImage value, Bitmap is resized to be as large as the PictureBox. In case
of AutoSize option, the size of the PictureBox is resized according to the size of the
Bitmap. In the program below we display a temperature map (found in idokep.hu) in
the PictureBox control. SizeMode property is preset in the Designer, the size
parameters of the images are shown in the label:

2. The window model and the basic controls

68

❖ 2.15. Control with the ability to visualize PixelGrapic images:
PictureBox

2. The window model and the basic controls

Normal size picturebox on the form Stretched size picturebox on the form

69

❖ 2.15. Control with the ability to visualize PixelGrapic images:
PictureBox

2. The window model and the basic controls

Automatic sized picturebox on the form

70

❖ 2.16. Menu bar at the top of our window: MenuStrip control

• In case our program implements so many functions that we would require a large
number of command buttons in order to start them, it is practical to group functions
hierarchically and settle them into a menu.

2. The window model and the basic controls

Menustrip Menuitem on the menustrip The Help menu

71

❖ 2.16. Menu bar at the top of our window: MenuStrip control

2. The window model and the basic controls

The submenu

72

❖ 2.17. The ContextMenuStrip control which is invisible in basic
mode

• The main menu of the MenuStrip control is always visible. The ContextMenuStrip can
only be seen while designing, during running it is only visible if it is visualized from the
program. It is recommended to use it with the local menu appearing at the mouse
cursor after clicking the right mouse button. We create the items of the menu in
Designer, we write the Click event hanler of the menu items in the editor then in the
MouseDown or MouseClick event handler of the Form (they have a coordinate
parameter) we visualize the ContextMenu.

2. The window model and the basic controls

The contextmenu

73

❖ 2.17. The ContextMenuStrip control which is invisible in basic
mode

• The event control Form_MouseClick looks like this:

2. The window model and the basic controls

74

❖ 2.18. The menu bar of the toolkit: the control ToolStrip

• The toolkit contains graphical command buttons next to each other. The Image
property of the buttons contains the visualized image. Since they are command
buttons, they run the Click event when clicking on them. The figure below shows the
elements of the toolstrip, with the button contatining the image at the top, which will
bear a name starting with toolStripButton:

2. The window model and the basic controls

Toolkit on toolstrip

75

❖ 2.19. The status bar appearing at the bottom of the window,
the StatusStrip control

• A status bar visualises status information, therefore it is useful to create a label and a
progressbar for it. The name of the label placed over it starts with toolStripLabel, that
of the progressbar will start with toolStripProgressBar. It is not clicked in general, so
Click event handlers are not written for it.

2. The window model and the basic controls

76

❖ 2.20. Dialog windows helping file usage: OpenFileDialog,
SaveFileDialog and FolderBrowserDialog

• Almost all computer programs in which modifications carried out can be saved contain
the Open file and Save file functions. Selecting a file to be saved or to be opened is
done with the same window type in each software because the developers of .NET
created a uniform control for these windows.

2. The window model and the basic controls

77

❖ 2.21. The predefined message window: MessageBox

• A MessageBox is a dialog window containing a message and is provided by the
Windows. In a message box, the user can choose one of the command buttons.

• MessageBox::Show() can be called with one string argument: in that case, it will not
have a header, and will have only the "OK” button.

2. The window model and the basic controls

78

❖ 2.22. Control used for timing: Timer

• The Timer control makes it possible to run a code portion at given time intervals. It
should be put under the form in the Designer, because it is not visible during
execution.

• Its property named Interval contains the interval in milliseconds, and if the Enabled
property is set to false, the timer can be disabled. If it is enabled and Interval contains
a useful value (>=20 ms), the Timer executes its default event handler, the Tick.
Progammers have to make sure that the code portion finish before the next event is
occured (that is when time is out). The following code portion sets up the timer1 to
run in every second:

2. The window model and the basic controls

79

❖ 2.22. Control used for timing: Timer

• The programmed timer of the next code prints out the current time in seconds into
the title of the form:

2. The window model and the basic controls

80

❖ 2.23. SerialPort

• The SerialPort control makes possible the communication between a serial port of rs-
232 standard and the peripherial devices connected to it (modem, SOC,
microcontroller, Bluetooth device). The port has to be parameterized then opened.
Then, textual information (Write, WriteLine, Read, ReadLine) and binary data
(WriteByte, ReadByte) can be sent and received. It also has an event handler function:
if data arrive, the DataReceived event is run. The following code portion checks all
available serial ports, and searches the hardware named "iCorset" by sending a "?"
character. If it is not found, it exits with an error message. In the case of virtual serial
ports (USBs), the value of the BaudRate parameter can be anything.

2. The window model and the basic controls

81

❖ 2.23. SerialPort

2. The window model and the basic controls

82

Chapter IV. Graphical User Interface in C++/CLI

❖ 1. Specialties of CLI, standard C++ and C++/CLI

❖ 2. The window model and the basic controls

❖ 3. Text and binary files, data streams

❖ 4. The GDI+

83

3.1. Preparing to handling files

3.2. Methods of the File static class

3.3. The FileStream reference class

3.4. The BinaryReader reference class

3.5. The BinaryWriter reference class

3.6. Processing text files: the StreamReader and StreamWriter
reference classes

3.7. The MemoryStream reference class

3. Text and binary files, data streams

84

❖ 3.1. Preparing to handling files

• Contrary to graphics or to controls, file handling namespace is not inserted in the form
when a new project is created. This is the task of programmers to insert it at the
beginning of the form1.h, where the other namespaces are:

3. Text and binary files, data streams

Another thing to do is to decide what the file to be handled contains and what we would
like to do with it:

• Only deleting, renaming, copying it or checking whether it exists.

• We would like to handle it by bytes (as a block containing bytes) if we are brave
enough: virus detection, character encoding etc.

• It is a binary file with fixed-length record structure.

• If it is a text file with variable-length lines (Strings), and the lines end with line feed.

85

❖ 3.1. Preparing to handling files

The file name can be given in two ways:

• The file name is given in the code, therefore it is hard coded. If the file is only for the
usage of programmer and it is always the same file, than this is a simple and rapid way
of providing the name of the file.

• Users can select the file by using OpenFileDialog or SaveFileDialog (see
section Section 2.20, “Dialog windows helping file usage: OpenFileDialog,
SaveFileDialog and FolderBrowserDialog”). In this case, the name of the file is stored in
the FileName property of these dialog boxes.

3. Text and binary files, data streams

86

❖ 3.2. Methods of the File static class

• bool File::Exists(String^ filename) It examines the existence of the file given in
filename, if it exists, the output is true if not, it is false. By using it we can avoid some
errors: opening a non-existing file, overwriting an important data file by mistake.

• void File::Delete(String^ filename) It deletes the file given in filename. As opposed to
current operating systems, deletion does not mean moving to a recycle bin but a real
deletion.

• void File::Move(String^ oldname, String^ newname) It renames the disk file named
oldname to newname. If there are different paths in the filenames, the file moves into
the other directory.

• void File::Copy(String^ sourcefile, String^ targetfile) This method is similar to Move,
except that the source file does not disappear but the file is duplicated. A new file is
created on the disk, with the content of the source file.

3. Text and binary files, data streams

87

❖ 3.2. Methods of the File static class

FileStream^ File::Open(String^ filename, FileMode mode) Opening the given file. The
FileStream^ does not get its value with gcnew but with this method. It does not have to be
used for text files but for all the other files (containing bytes or binary files containing
records) opening should be used. The values of mode:

• FileMode::Append we go to the end of the text file and switch to write mode. If the
file does not exist, a new file is created.

• FileMode::Create this mode creates a new file. If the file already exists, it is
overwritten. In the directory of the path, the current user should have a right for
writing.

• FileMode::CreateNew this mode also creates a new file but if the file already exists, we
get an exception.

• FileMode::Open opening an existing file for reading/writing. This mode is generally
used after creating the file, e.g. after using the FileOpenDialog.

3. Text and binary files, data streams

88

❖ 3.2. Methods of the File static class

FileStream^ File::Open(String^ filename, FileMode mode) Opening the given file. The
FileStream^ does not get its value with gcnew but with this method. It does not have to be
used for text files but for all the other files (containing bytes or binary files containing
records) opening should be used. The values of mode:

• FileMode::OpenOrCreate we open an existing file, if it does not exist, a file with the
given name is created.

• FileMode::Truncate we open an existing file and delete its content. The length of the
file will be 0 byte.

3. Text and binary files, data streams

89

❖ 3.3. The FileStream reference class

If files are processed by bytes or they are binary, we need to create a FileStream^ object for
the file. The class instance of FileStream is not created by gcnew but by File::Open(), so the
physical disk file and FileStream are assigned to each other. With the help of FileStream the
actual file pointer is accessable, and it can be moved. The measure unit of the position and
the movement is byte; its data type is 64 bit integer so that it should manage files bigger
than 2GB. Its most frequently used properties and methods:

• Length: read-only property, the actual size of the file in bytes.

• Name: the name of the disk file that we opened.

• Position: writable/readable property, the current file position in bytes. The next
writing operation will write into this position, the next reading will read from here.

• Seek(how much, with regard to what) method for movng the file pointer. With regard
to the Position property, it can be given how we understand movement: from the
beginning of the file (SeekOrigin::Begin), from the current position
(SeekOrigin::Current), from the end of the file (SeekOrigin::End). This operation must
be used also when we attach BinaryReader or BinaryWriter to FileStream since they do
not have a Seek() method.

3. Text and binary files, data streams

90

❖ 3.3. The FileStream reference class

Its most frequently used properties and methods:

• int ReadByte(), WriteByte(unsigned char) methods for reading and writing data of one
byte. Reading and writing happens in the current position. At the level of the
operating system, file reading is carried out into a byte array; these functions are
realized as reading an array with one element.

• int Read(array<unsigned char>, offset, count): a method for reading bytes into a byte
array. The bytes will be placed from the array’s element with the index offset and the
count is maximum number of bytes to read. Its return value is: how many bytes could
be read.

3. Text and binary files, data streams

91

❖ 3.3. The FileStream reference class

Its most frequently used properties and methods:

• Write(array<unsigned char>,offset, count): a method for writing a block of bytes from
a byte array. Writing begins at at the element with the index offset and it writes
maximum count elements.

• Flush(void): clears buffers for this stream and causes any buffered data to be written
to the file.

• Close(): closing FileStream. Files should be closed after use in order to avoid data loss
and running out of resources.

3. Text and binary files, data streams

92

❖ 3.4. The BinaryReader reference class

• If we want to read non-byte type binary data from a file, we use BinaryReader. In the
BinaryReader ‘s constructor we give the opened FileStream handle as an argument.
BinaryReader is created with a regular gcnew operator. It is important to note that
BinaryReader is not able to open the disk file and to assign it to a FileStream.
BinaryReader contains methods for the basic data types: ReadBool(), ReadChar(),
ReadDouble(), ReadInt16(), ReadInt32(), ReadInt64(), ReadUInt16(), ReadString(),
ReadSingle() etc. The file pointer is incremented with the length of the read data.
BinaryReader also should be closed after use with the method Close() before closing
the FileStream.

3. Text and binary files, data streams

93

❖ 3.5. The BinaryWriter reference class

• If we want to write binary data into FileStream, we use BinaryWriter. It is created
similarly to BinaryReader, with the operator gcnew. The difference is
that Reader contained methods with a given return data type but Writer contains a
method with a given parameter and without a return value, with a number of
overloaded versions. The name of the method is Write and it can be used with several
data types: from Bool to cli::Array^ in the order of complexity. The overview of binary
file processing can be seen below:

3. Text and binary files, data streams

94

❖ 3.5. The BinaryWriter reference class

3. Text and binary files, data streams

Binary file processing

95

❖ 3.6. Processing text files: the StreamReader and StreamWriter
reference classes

• Text files are composed of variable-length lines that are legible for human beings as
well. In these files, characters are stored in ASCII, Unicode, UTF-8 etc. encoding, one
line of a text file corresponds to the data type String^ of the compiler. Lines end with
CR/LF (two characters) under DOS/Windows-based systems. Because of variable-
length lines, text files can only be processed sequentially: reading the 10th line can be
done by reading the first 9 lines and finally the requested 10th line. When the file is
opened, it cannot be calculated at which byte the 10th line starts in the file, only after
all preceding lines have been read.

3. Text and binary files, data streams

96

❖ 3.6. Processing text files: the StreamReader and StreamWriter
reference classes

• Text files have an important role in realizing communication between different
computer programs. Since they can be read for example in NotePad, humans can also
modify their content. Text files are used, among other things, to save databases (in
that case, a text file is called dump and it contains SQL statements that create the
saved database on an empty system), to communicate with Excel (comma or tabulator
separated files with CSV extension) and even e-mails are transferred as text files
between incoming and outgoing e-mail servers. Measuring devices also create text
files containing the measurement results. In these files, each line contains one
measurement data in order that these data could be processed or visualized with any
software (even with Excel) by a user carrying out the measurement.

3. Text and binary files, data streams

97

❖ 3.6. Processing text files: the StreamReader and StreamWriter
reference classes

• Text files can be processed by reference variables of type StreamReader and
StreamWriter classes. For that purpose, the gcnew operator should be used, and the
name of the file should be specified in its constructor. A FileStream is not needed to be
defined because StreamReader and StreamWriter use exclusively disk files; therefore
they can create for themselves their own FileStream (BaseStream) with which
programmers do not have to deal. The most frequently used method of StreamReader
is ReadLine(), which reads the next line of the text file and its most frequently used
property is EndOfStream, which becomes true accessing the end of the file. Attention:
EndOfStream shows the state of the latest reading operation, ReadLine() returns a
zero-length string at the end of the file, and the value of EndOfStream will be true.
Thus, the ordinary pre-test loops can be used (while (! StreamReader->EndOfStream)
…). One only has to examine if the length of the currently read line is greater than 0.
The most frequently used method of StreamWriter is WriteLine(String), which writes
the string passed as a parameter and `the newline character in the text file.
Write(String) is the same but it does not write the newline character. The newline
character(s) (CR,LF,CR/LF) can be set by the NewLine property.

3. Text and binary files, data streams

98

❖ 3.6. Processing text files: the StreamReader and StreamWriter
reference classes

3. Text and binary files, data streams

99

❖ 3.6. Processing text files: the StreamReader and StreamWriter
reference classes

3. Text and binary files, data streams

100

❖ 3.7. The MemoryStream reference class

• One can also create sequential files, composed of bytes that are not stored on a disk
but in the memory. A great advantage of streams created in the memory is the speed
(a memory is at least two times faster than a storage device), its disadvantage is its
smaller size and that its content is lost if the program is exited. MemoryStream has the
same methods as FileStream: it reads/writes a byte or an array of bytes. It can be
created by the gcnew operator. The maximal size of a MemoryStream can be set in the
parameter of the constructor. If no parameter is given, MemoryStream will allocate
memory dynamically for writing. Using that class has two advantages as compared to
arrays: on one hand, automatic allocation and on the other hand, a MemoryStream
can easily be transformed into a FileStream if memory runs out by using File::Open()
instead of gcnew.

3. Text and binary files, data streams

KỸ THUẬT LẬP TRÌNH HỆ CƠ ĐIỆN TỬ

Programming Engineering in Mechatronics

1

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Giảng viên: TS. Nguyễn Thành Hùng

Đơn vị: NCM Robot, Khoa Cơ điện tử, Trường Cơ khí

Hà Nội, 2022

Chapter IV. Graphical User Interface

1. What is QT?

2. QT Framework

3. QT in Visual Studio

4. Qt5 C++ GUI Development

2

Chapter IV. Graphical User Interface

1. What is QT?

2. QT Framework

3. QT in Visual Studio

4. Qt5 C++ GUI Development

3

What is QT?

 A software development framework

 Qt framework

 APIs

 Qt Creator IDE

 Design and debug

 Tools and toolchains

 Simulator, complier, device toolchains

 Qt is released on 1991 by Trolltech

 Nokia acquired Trolltech in 2008

 Free and open source software to puclic

 C+ is the primary programming language

4

http://qt.nokia.com/downloads

Chapter IV. Graphical User Interface

1. What is QT?

2. QT Framework

3. QT in Visual Studio

4. Qt5 C++ GUI Development

5

QT Framework

 Qt is cross-platform application and UI framework.

 Qt provides a well defined API that can make development quick

and easy.

 Webkit

 Well accepted open source web browser

 Rapidly create real-time web content and services

 Use HTML and Java Script integrated in native code

6

QT Framework

 3D Graphics with OpenGL and OpenGL ES

 Easily incorporate 3D Graphics in your applications

 Get maximum graphics performance

 Multithreading support

 Network connectivity

 Advanced GUI development

7

QT Framework

8

Qt Framework – Application Classes

9

QT Creator – Development tools

10

Widgets

 Qt UI framework is based on widgets

 Widgets respond to UI events (key

presses/mouse movements), and update

their screen area

 Each widget has a parent, that affects its

behavior, and is embedded into it

 Most Qt classes are derived from QWidget

 Ex, QGLWidget, QPushbutton …

QPushButton * myButton = new QPushButton(…);

myButton->doSomethingAPI();

11

Widgets

12

Signals & Slots

 Signals & Slots

 Signals and slots are used for communication between objects. The signals and slots

mechanism is a central feature of Qt and probably the part that differs most from the

features provided by other frameworks.

 Signals

 Events occur and cause a signal

 Widgets contain a list of predefined signals, but you can subclass a widget to add your

own signal

 Example – button press, or Process complete

 Slots

 Slots are the functions which are assigned to handle a signal.

 Widgets contain a list of predefined slots.

 You can subclass a widget and add your own slots

13

Running Supplied Demo Applications

 There are over 300 demo and example applications supplied in the SDK.

 They come from the QT SDK

 Wide variety of applications. The same application from QT Demo.

 Use QT Creator to pull in the project and build and run it on the target.

14

Chapter IV. Graphical User Interface

1. What is QT?

2. QT Framework

3. QT in Visual Studio

4. Qt5 C++ GUI Development

15

QT in Visual Studio

 Download and Install Qt

 Download the open source version of Qt that is suitable for your operating system

https://www.qt.io/download

 Start the installation: select Tools, Qt Source, Qt chart and also Qt Data

Visualization

16

https://www.qt.io/download

QT in Visual Studio

 Download and Install Qt Visual Studio Tools

 Download Qt Visual Studio Tools and Install

https://marketplace.visualstudio.com/items?itemName=TheQtCompany.QtVisualStu

dioTools2019

 Open Visual studio, if the Qt VS Tools were correctly installed, you should find a new

menu item “Qt VS Tools”.

17

https://marketplace.visualstudio.com/items?itemName=TheQtCompany.QtVisualStudioTools2019

QT in Visual Studio

 Add the path towards the

components for the compiler: Qt

VS Tools -> Qt Options-> Add

button, Use the folder where you

installed Qt

18

QT in Visual Studio

19

 Creating Qt GUI Application

Projects

 Select New Project > Installed

> Templates > Visual C++ > Qt

> Qt GUI Application

 In the Name field, enter

AddressBook, and then select

OK

 To acknowledge the Welcome

dialog, select Next

 Select the modules to include in

the project, and then select Next

 In the Base class field, enter

QWidget as the base class type

QT in Visual Studio

20

 Creating Qt GUI Application Projects

 Select the Lower case filenames check box to only use lower case characters in the

names of the generated files

 Select the Precompiled header check box to use a precompiled header file

 Select the Add default application icon check box to use a default application icon

for the application

 Select Finish to create the project

 Select Build > Build Solution to build it, and then select Debug > Start

Debugging to run it. For now, the result is an empty window.

Chapter IV. Graphical User Interface

1. What is QT?

2. QT Framework

3. QT in Visual Studio

4. Qt5 C++ GUI Development

21

Qt5 C++ GUI Development

➢ First GUI Application

➢ Signal And Slots

➢ Layout Management

➢ Qt5 Style Sheets

➢ QPushButton

➢ QCheckBox

➢ QRadioButton

➢ QComboBox

22

➢ QListWidget

➢ QMessageBox

➢ QMenu And QToolbar

➢ QFileDialog

➢ QProgressBar

➢ Draw Text & Line with QPainter

➢ Draw Rectangle

➢ Draw Ellipse

Qt5 C++ GUI Development

 First GUI Application

 Create a new Project in your Qt5 framework

 Choose Qt Widget Application

 Click on next and finish your project

23https://codeloop.org/qt5-c-first-gui-application/

Qt5 C++ GUI Development

 First GUI Application

 .PRO file: PRO files include

references to project libraries,

assets, and source code files, as

well as other files such as

application resources (.QRC

files), project includes (.PRI

files), translation sources (.TS

files), phrase books (.QPH files),

and style sheets (.QSS files).Qt

projects are used for creating

applications that run on the Qt

framework.

24https://codeloop.org/qt5-c-first-gui-application/

Qt5 C++ GUI Development

 First GUI Application

 The header file .h:

25https://codeloop.org/qt5-c-first-gui-application/

Qt5 C++ GUI Development

 First GUI Application

 The .cpp files:

26https://codeloop.org/qt5-c-first-gui-application/

Qt5 C++ GUI Development

 First GUI Application

 The .ui file: we design our GUI application in here

27https://codeloop.org/qt5-c-first-gui-application/

Qt5 C++ GUI Development

 First GUI Application

 Run the project and this will be the result

28https://codeloop.org/qt5-c-first-gui-application/

Qt5 C++ GUI Development

 Signal And Slots

 Creating New Project in Qt5 C++

 Open your mainwindow.ui

 Add a QPushButton

29https://codeloop.org/qt5-c-signal-and-slots-introduction/

Qt5 C++ GUI Development

 Signal And Slots

 Creating New Project in Qt5 C++

 Open your mainwindow.ui

 Add a QProgressbar and a Horizontal Slider

30https://codeloop.org/qt5-c-signal-and-slots-introduction/

Qt5 C++ GUI Development

 Signal And Slots

 For connecting the signal and slots you need to open your mainwindow.cpp and in the

constructor add this line of code

31https://codeloop.org/qt5-c-signal-and-slots-introduction/

connect(ui->horizontalSlider, SIGNAL(valueChanged(int)), ui->progressBar, SLOT(setValue(int)));

Qt5 C++ GUI Development

 Layout Management

 All QWidget subclasses can use layouts to manage their children. The

QWidget::setLayout() function applies a layout to a widget.

 When a layout is set on a widget in this way, it takes charge of the following tasks:

 Positioning of child widgets

 Sensible default sizes for windows

 Sensible minimum sizes for windows

 Resize handling

 Automatic updates when contents change:

➢ Font size, text or other contents of child widgets

➢ Hiding or showing a child widget

➢ Removal of child widgets

32https://codeloop.org/qt5-layout-management-introduction/

Qt5 C++ GUI Development

 Layout Management

 The built-in layout managers: QHBoxLayout, QVBoxLayout, QGridLayout, and

QFormLayout

33https://codeloop.org/qt5-layout-management-introduction/

QHBoxLayout QVBoxLayout

QGridLayout

QFormLayout

Qt5 C++ GUI Development

 Qt5 Style Sheets

 allows you to customize the appearance of widgets

 subclass Qstyle

 HTML Cascading Style Sheets (CSS)

 QApplication::setStyleSheet() and QWidget::setStyleSheet()

 Example

34https://codeloop.org/qt5-style-sheets-introduction-and-example/

Qt5 C++ GUI Development

 Qt5 Style Sheets

 The Style Sheet Syntax And Rules

 HTML CSS

 A style rule is made up of a selector and a declaration.

 The selector specifies which widgets are affected by the rule

 The declaration specifies which properties should be set on the widget

35https://codeloop.org/qt5-style-sheets-introduction-and-example/

selector declaration

Qt5 C++ GUI Development

 Qt5 Style Sheets

 Example

36https://codeloop.org/qt5-style-sheets-introduction-and-example/

Qt5 C++ GUI Development

 Qt5 Style Sheets

 Example

37https://codeloop.org/qt5-style-sheets-introduction-and-example/

Qt5 C++ GUI Development

 QPushButton

 The most commonly used widget in any graphical user interface

 A push button emits the signal clicked() when it is activated by the mouse, the

Spacebar or by a keyboard shortcut.

 Push buttons also provide less commonly used signals, for example pressed() and

released().

38https://codeloop.org/qt5-qpushbutton-with-signal-and-slots/

Qt5 C++ GUI Development

 QPushButton

 Example

39https://codeloop.org/qt5-qpushbutton-with-signal-and-slots/

Qt5 C++ GUI Development

 QPushButton

 Example

40https://codeloop.org/qt5-qpushbutton-with-signal-and-slots/

Qt5 C++ GUI Development

 QPushButton

 Example

41https://codeloop.org/qt5-qpushbutton-with-signal-and-slots/

mainwindow.cpp

Qt5 C++ GUI Development

 QPushButton

 Example

42https://codeloop.org/qt5-qpushbutton-with-signal-and-slots/

Qt5 C++ GUI Development

 QCheckBox

 A QCheckBox is an option button that can be switched on (checked) or off (unchecked).

 Signal: stateChanged()

 Slot: isChecked()

43https://codeloop.org/how-to-create-qcheckbox-in-qt5-gui/

Checkboxes Exclusive Checkboxes Non Exclusive

Qt5 C++ GUI Development

 QCheckBox

 Example

44https://codeloop.org/how-to-create-qcheckbox-in-qt5-gui/

mainwindow.ui

Qt5 C++ GUI Development

 QCheckBox

 Example

45https://codeloop.org/how-to-create-qcheckbox-in-qt5-gui/

mainwindow.cpp

Qt5 C++ GUI Development

 QCheckBox

 Example

46https://codeloop.org/how-to-create-qcheckbox-in-qt5-gui/

mainwindow.cpp

Qt5 C++ GUI Development

 QCheckBox

 Example

47https://codeloop.org/how-to-create-qcheckbox-in-qt5-gui/

Qt5 C++ GUI Development

 QRadioButton

 A QRadioButton is an option button that can be switched on (checked) or off

(unchecked).

 Radio buttons typically present the user with a “one of many” choice.

 Example

48https://codeloop.org/qt5-gui-how-to-create-qradiobutton/

Qt5 C++ GUI Development

 QRadioButton

 Example

49https://codeloop.org/qt5-gui-how-to-create-qradiobutton/

Qt5 C++ GUI Development

 QRadioButton

 Example

50https://codeloop.org/qt5-gui-how-to-create-qradiobutton/

Qt5 C++ GUI Development

 QRadioButton

 Example

51https://codeloop.org/qt5-gui-how-to-create-qradiobutton/

Qt5 C++ GUI Development

 QComboBox

 A combobox is a selection widget that displays the current item, and can pop up a list

of selectable items.

 A combobox may be editable, allowing the user to modify each item in the list.

 Example

52https://codeloop.org/qt5-gui-development-how-to-create-combobox/

Qt5 C++ GUI Development

 QComboBox

 Example: first way

53https://codeloop.org/qt5-gui-development-how-to-create-combobox/

Qt5 C++ GUI Development

 QComboBox

 Example: first way

54https://codeloop.org/qt5-gui-development-how-to-create-combobox/

Qt5 C++ GUI Development

 QComboBox

 Example: second way

55https://codeloop.org/qt5-gui-development-how-to-create-combobox/

Qt5 C++ GUI Development

 QComboBox

 Example: second way

56https://codeloop.org/qt5-gui-development-how-to-create-combobox/

Qt5 C++ GUI Development

 QListWidget

 QListWidget is a convenience class that provides a list view similar to the one

supplied by QListView, but with a classic item-based interface for adding and

removing items.

 Example:

57https://codeloop.org/qt5-gui-development-how-to-create-qlistwidget/

Qt5 C++ GUI Development

 QListWidget

 Example: first way

58https://codeloop.org/qt5-gui-development-how-to-create-qlistwidget/

Qt5 C++ GUI Development

 QListWidget

 Example: second way

59https://codeloop.org/qt5-gui-development-how-to-create-qlistwidget/

Qt5 C++ GUI Development

 QListWidget

 Example: Design UI

60https://codeloop.org/qt5-gui-development-how-to-create-qlistwidget/

Qt5 C++ GUI Development

 QListWidget

 Example: Coding

61https://codeloop.org/qt5-gui-development-how-to-create-qlistwidget/

Qt5 C++ GUI Development

 QListWidget

 Example:

62https://codeloop.org/qt5-gui-development-how-to-create-qlistwidget/

Qt5 C++ GUI Development

 QMessageBox

 QMessageBox supports four predefined message severity levels, or message types,

which really only differ in the predefined icon they each show.

 The following rules are guidelines:

63https://codeloop.org/how-to-create-qmessagebox-in-qt5-gui/

Qt5 C++ GUI Development

 QMessageBox

 Example

64https://codeloop.org/how-to-create-qmessagebox-in-qt5-gui/

Qt5 C++ GUI Development

 QMessageBox

 Example

65https://codeloop.org/how-to-create-qmessagebox-in-qt5-gui/

Qt5 C++ GUI Development

 QMessageBox

 Example

66https://codeloop.org/how-to-create-qmessagebox-in-qt5-gui/

Qt5 C++ GUI Development

 QMessageBox

 Example

67https://codeloop.org/how-to-create-qmessagebox-in-qt5-gui/

Qt5 C++ GUI Development

 QMenu And QToolbar

 What is a Menu?

68https://codeloop.org/qt5-gui-creating-qmenu-and-qtoolbar/

Qt5 C++ GUI Development

 QMenu And QToolbar

 What is a QToolbar?

69https://codeloop.org/qt5-gui-creating-qmenu-and-qtoolbar/

Qt5 C++ GUI Development

 QMenu And QToolbar

70https://codeloop.org/qt5-gui-creating-qmenu-and-qtoolbar/

Qt5 C++ GUI Development

 QFileDialog

 QFileDialog class enables a user to traverse the file system in order to select one or

many files or a directory.

71https://codeloop.org/how-to-create-qfiledialog-in-qt5-gui/

Qt5 C++ GUI Development

 QFileDialog

 Example: right click on your Open menu item in Signals And Slot Editor, after that

choose Go To Slot and from the dialog choose triggered() like this.

72https://codeloop.org/how-to-create-qfiledialog-in-qt5-gui/

Qt5 C++ GUI Development

 QFileDialog

 Example:

73https://codeloop.org/how-to-create-qfiledialog-in-qt5-gui/

mainwindow.h

Qt5 C++ GUI Development

 QFileDialog

 Example:

74https://codeloop.org/how-to-create-qfiledialog-in-qt5-gui/

mainwindow.cpp

Qt5 C++ GUI Development

 QFileDialog

 Example:

75https://codeloop.org/how-to-create-qfiledialog-in-qt5-gui/

Qt5 C++ GUI Development

 QFileDialog

 Example: Opening and saving files

 Open Files

76
https://qt.misfrog.com/posts/%E3%83%A1%E3%83%A2%E3%81%AE%E4%BF%9D%E5%AD%98%E3%81%A8%E3%83%AD%E3%83%BC%
E3%83%89

Qt5 C++ GUI Development

 QFileDialog

 Example: Opening and saving files

 Save Files

77
https://qt.misfrog.com/posts/%E3%83%A1%E3%83%A2%E3%81%AE%E4%BF%9D%E5%AD%98%E3%81%A8%E3%83%AD%E3%83%BC%
E3%83%89

Qt5 C++ GUI Development

 QFileDialog

 Example: Opening, displaying and saving images

 create a new Qt Widgets application

 add a Graphics View (located under the Display Widgets)

 add two Push Buttons: openButton and saveButton

78http://creative-punch.net/2014/02/opening-displaying-saving-images-qt/

mainwindow.h

Qt5 C++ GUI Development

 QFileDialog

 Example: Opening, displaying and saving images

 Adding events for the buttons

79http://creative-punch.net/2014/02/opening-displaying-saving-images-qt/

Qt5 C++ GUI Development

 QFileDialog

 Example: Opening, displaying and saving images

 Opening an image and displaying it on the QGraphicsView

80http://creative-punch.net/2014/02/opening-displaying-saving-images-qt/

Qt5 C++ GUI Development

 QFileDialog

 Example: Opening, displaying and saving images

 Saving the image

81http://creative-punch.net/2014/02/opening-displaying-saving-images-qt/

Qt5 C++ GUI Development

 QProgressBar

 A progress bar is used to give the user an indication of the progress of an operation

and to reassure them that the application is still running.

 Example:

82https://codeloop.org/how-to-create-qprogressbar-in-qt5-gui/

Qt5 C++ GUI Development

 QProgressBar

 Example:

83https://codeloop.org/how-to-create-qprogressbar-in-qt5-gui/

Qt5 C++ GUI Development

 QProgressBar

 Example:

84https://codeloop.org/how-to-create-qprogressbar-in-qt5-gui/

Qt5 C++ GUI Development

 QProgressBar

 Example:

85https://codeloop.org/how-to-create-qprogressbar-in-qt5-gui/

Qt5 C++ GUI Development

 QProgressBar

 Example:

86https://codeloop.org/how-to-create-qprogressbar-in-qt5-gui/

Qt5 C++ GUI Development

 Draw Text & Line with QPainter

 The QPainter class performs low-level painting on

widgets and other paint devices.

 QPainter provides highly optimized functions to do

most of the drawing GUI programs require.

 What is Qbrush?

 A brush has a style, a color, a gradient and a texture.

 The brush style() defines the fill pattern using the

Qt::BrushStyle enum.

87https://codeloop.org/how-to-draw-text-line-in-qt5-with-qpainter/ Brush Styles

Qt5 C++ GUI Development

 Draw Text & Line with QPainter

 What is QPen?

 A pen has a style(), width(), brush(), capStyle() and joinStyle().

 The pen style defines the line type.

 The brush is used to fill strokes generated with the pen. Use the QBrush class to specify fill

styles.

88https://codeloop.org/how-to-draw-text-line-in-qt5-with-qpainter/

Qt5 C++ GUI Development

 Draw Text & Line with QPainter

 Example:

89https://codeloop.org/how-to-draw-text-line-in-qt5-with-qpainter/

Qt5 C++ GUI Development

 Draw Text & Line with QPainter

 Example:

90https://codeloop.org/how-to-draw-text-line-in-qt5-with-qpainter/

mainwindow.cpp

Qt5 C++ GUI Development

 Draw Text & Line with QPainter

 Example:

91https://codeloop.org/how-to-draw-text-line-in-qt5-with-qpainter/

Qt5 C++ GUI Development

 Draw Rectangle

 Example

92https://codeloop.org/qt5-qpainter-how-to-draw-rectangle/

mainwindow.h

Qt5 C++ GUI Development

 Draw Rectangle

 Example

93https://codeloop.org/qt5-qpainter-how-to-draw-rectangle/

mainwindow.cpp

Qt5 C++ GUI Development

 Draw Rectangle

 Example

94https://codeloop.org/qt5-qpainter-how-to-draw-rectangle/

Qt5 C++ GUI Development

 Draw Ellipse

 Example

95https://codeloop.org/qt5-gui-qpainter-how-to-draw-ellipse/

Qt5 C++ GUI Development

 Draw Ellipse

 Example

96https://codeloop.org/qt5-gui-qpainter-how-to-draw-ellipse/

Qt5 C++ GUI Development

 Draw Ellipse

 Example

97https://codeloop.org/qt5-gui-qpainter-how-to-draw-ellipse/

Qt5 C++ GUI Development

 Draw BarChart with QtChart

 Example

 add Horizontal Layout in our gui window

 right-click on the layout widget you just

dragged to the central widget, and select

Morph into | QFrame.

98https://codeloop.org/qt5-tutorial-creating-barchart-with-qtchart/

Qt5 C++ GUI Development

 Draw BarChart with QtChart

 Example

99https://codeloop.org/qt5-tutorial-creating-barchart-with-qtchart/

Qt5 C++ GUI Development

 Draw BarChart with QtChart

 Example

100https://codeloop.org/qt5-tutorial-creating-barchart-with-qtchart/

Qt5 C++ GUI Development

 Draw BarChart with QtChart

 Example

101https://codeloop.org/qt5-tutorial-creating-barchart-with-qtchart/

Qt5 C++ GUI Development

 Draw LineChart with QtChart

 Example

102https://codeloop.org/qt5-tutorial-creating-linechart-with-qtchart/

Qt5 C++ GUI Development

 Draw LineChart with QtChart

 Example

103https://codeloop.org/qt5-tutorial-creating-linechart-with-qtchart/

Qt5 C++ GUI Development

 Draw PieChart with QtChart

 Example

104https://codeloop.org/qt5-tutorial-creating-piechart-with-qtchart/

Qt5 C++ GUI Development

 Draw PieChart with QtChart

 Example

105https://codeloop.org/qt5-tutorial-creating-piechart-with-qtchart/

Qt5 C++ GUI Development

 Draw DonutChart with QtChart

 Example

106https://codeloop.org/qt5-tutorial-creating-donutchart-with-qtchart/

Qt5 C++ GUI Development

 Draw DonutChart with QtChart

 Example

107https://codeloop.org/qt5-tutorial-creating-donutchart-with-qtchart/

KỸ THUẬT LẬP TRÌNH HỆ CƠ ĐIỆN TỬ

Programming Engineering in Mechatronics

1

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Giảng viên: TS. Nguyễn Thành Hùng

Đơn vị: Bộ môn Cơ điện tử, Viện Cơ khí

Hà Nội, 2018

2

Chapter V. Hardware Interface Programming

❖ 1. Introduction

❖ 2. Serial Port

❖ 3. Read Data

❖ 4. Send Data

❖ 5. Real-Time Data Transfer

❖ 6. Digital Image Processing

3

1. Introduction

❖ A hardware interface specifies the plugs, sockets, cables and electrical

signals that pass through each line between the CPU and a peripheral

device or communications network.

➢ The CPU socket on the motherboard determines which CPU chips can be

used in the computer.

➢ Peripheral cards, such as a high-end graphics cards, plug into the bus on

the motherboard. The most common buses are PCI and PCI Express.

https://www.pcmag.com/encyclopedia/term/51988/standards-hardware-interfaces

4

1. Introduction

❖ The most widely used hardware interface for attaching external devices to

computers is USB. It connects printers, cameras, music players, flash drives

and auxiliary hard and optical drives.

❖ FireWire is also used for camcorders and hard disks.

❖ In addition, SATA is a common hard drive and optical drive interface.

❖ The GPIB IEEE 488 standard is used for process control instruments.

❖ The de facto standard for connecting devices to local networks (LANs) is

Ethernet, which is also used to hook up a cable or DSL modem.

https://www.pcmag.com/encyclopedia/term/51988/standards-hardware-interfaces

5

2. Serial Port

❖ Serial ports provide an easy way to communicate between many types

of hardware and your computer.

❖ They are relatively simple to use and are very common among

peripherals and especially DIY projects.

❖ Many platforms such as Arduino have built in serial communication so

they are really easy to set up and use.

❖ Many times you may want your project to communicate with your

computer in order to have a cool interactive output, a neat sensor that

passes data to your computer, or anything else you could possibly

dream up.

6

2. Serial Port

❖ Visual Studio Serial Port control

▪ Visual Studio has a control that performs serial input and output. It is

the SerialPort control and found in the Components toolbox tab.

▪ It is a non visual control. Its main properties are set to a common

communications rate and are: BaudRate: 9600, DataBits: 8, Parity:

None, PortName: COM1, StopBits: One.

▪ Its main event is: DataReceived which occurs when data is received

from the port.

7

2. Serial Port

Description

SerialPort() Initializes a new instance of the SerialPort class.

SerialPort(IContainer^) Initializes a new instance of the SerialPort class using the
specified IContainer object.

SerialPort(String^) Initializes a new instance of the SerialPort class using the
specified port name.

SerialPort(String^, Int32) Initializes a new instance of the SerialPort class using the
specified port name and baud rate.

SerialPort(String^, Int32, Parity) Initializes a new instance of the SerialPort class using the
specified port name, baud rate, and parity bit.

SerialPort(String^, Int32, Parity,
Int32)

Initializes a new instance of the SerialPort class using the
specified port name, baud rate, parity bit, and data bits.

SerialPort(String^, Int32, Parity,
Int32, StopBits)

Initializes a new instance of the SerialPort class using the
specified port name, baud rate, parity bit, data bits, and stop bit.

❖ Visual Studio Serial Port control: Constructors

https://msdn.microsoft.com/en-us/library/s14dyf47.aspx
https://msdn.microsoft.com/en-us/library/15d2aez9.aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.icontainer.aspx
https://msdn.microsoft.com/en-us/library/7sbhatw5.aspx
https://msdn.microsoft.com/en-us/library/8bt1b81c.aspx
https://msdn.microsoft.com/en-us/library/69xzbdd5.aspx
https://msdn.microsoft.com/en-us/library/wtfta1zd.aspx
https://msdn.microsoft.com/en-us/library/z8d1ykfs.aspx

8

2. Serial Port

❖ Visual Studio Serial Port control: Properties
BaseStream Gets the underlying Stream object for a SerialPort object.

BaudRate Gets or sets the serial baud rate.

BreakState Gets or sets the break signal state.

BytesToRead Gets the number of bytes of data in the receive buffer.

BytesToWrite Gets the number of bytes of data in the send buffer.

CanRaiseEvents Gets a value indicating whether the component can raise an event. (Inherited from Component)

CDHolding Gets the state of the Carrier Detect line for the port.

Container Gets the IContainer that contains the Component. (Inherited from Component)

CtsHolding Gets the state of the Clear-to-Send line.

DataBits Gets or sets the standard length of data bits per byte.

DesignMode Gets a value that indicates whether the Component is currently in design mode. (Inherited from Component)

DiscardNull Gets or sets a value indicating whether null bytes are ignored when transmitted between the port and the receive buffer.

DsrHolding Gets the state of the Data Set Ready (DSR) signal.

DtrEnable Gets or sets a value that enables the Data Terminal Ready (DTR) signal during serial communication.

Encoding Gets or sets the byte encoding for pre- and post-transmission conversion of text.

Events Gets the list of event handlers that are attached to this Component. (Inherited from Component)

https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.basestream?view=netframework-4.7.2#System_IO_Ports_SerialPort_BaseStream
https://docs.microsoft.com/en-us/dotnet/api/system.io.stream?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.baudrate?view=netframework-4.7.2#System_IO_Ports_SerialPort_BaudRate
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.breakstate?view=netframework-4.7.2#System_IO_Ports_SerialPort_BreakState
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.bytestoread?view=netframework-4.7.2#System_IO_Ports_SerialPort_BytesToRead
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.bytestowrite?view=netframework-4.7.2#System_IO_Ports_SerialPort_BytesToWrite
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.component.canraiseevents?view=netframework-4.7.2#System_ComponentModel_Component_CanRaiseEvents
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.component?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.cdholding?view=netframework-4.7.2#System_IO_Ports_SerialPort_CDHolding
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.component.container?view=netframework-4.7.2#System_ComponentModel_Component_Container
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.icontainer?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.component?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.component?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.ctsholding?view=netframework-4.7.2#System_IO_Ports_SerialPort_CtsHolding
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.databits?view=netframework-4.7.2#System_IO_Ports_SerialPort_DataBits
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.component.designmode?view=netframework-4.7.2#System_ComponentModel_Component_DesignMode
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.component?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.component?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.discardnull?view=netframework-4.7.2#System_IO_Ports_SerialPort_DiscardNull
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.dsrholding?view=netframework-4.7.2#System_IO_Ports_SerialPort_DsrHolding
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.dtrenable?view=netframework-4.7.2#System_IO_Ports_SerialPort_DtrEnable
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.encoding?view=netframework-4.7.2#System_IO_Ports_SerialPort_Encoding
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.component.events?view=netframework-4.7.2#System_ComponentModel_Component_Events
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.component?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.component?view=netframework-4.7.2

9

2. Serial Port

❖ Visual Studio Serial Port control: Properties

Handshake Gets or sets the handshaking protocol for serial port transmission of data using a value from Handshake.

IsOpen Gets a value indicating the open or closed status of the SerialPort object.

NewLine Gets or sets the value used to interpret the end of a call to the ReadLine() and WriteLine(String) methods.

Parity Gets or sets the parity-checking protocol.

ParityReplace Gets or sets the byte that replaces invalid bytes in a data stream when a parity error occurs.

PortName Gets or sets the port for communications, including but not limited to all available COM ports.

ReadBufferSize Gets or sets the size of the SerialPort input buffer.

ReadTimeout Gets or sets the number of milliseconds before a time-out occurs when a read operation does not finish.

ReceivedBytesThreshold Gets or sets the number of bytes in the internal input buffer before a DataReceived event occurs.

RtsEnable Gets or sets a value indicating whether the Request to Send (RTS) signal is enabled during serial
communication.

Site Gets or sets the ISite of the Component. (Inherited from Component)

StopBits Gets or sets the standard number of stopbits per byte.

WriteBufferSize Gets or sets the size of the serial port output buffer.

WriteTimeout Gets or sets the number of milliseconds before a time-out occurs when a write operation does not finish.

https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.handshake?view=netframework-4.7.2#System_IO_Ports_SerialPort_Handshake
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.handshake?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.isopen?view=netframework-4.7.2#System_IO_Ports_SerialPort_IsOpen
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.newline?view=netframework-4.7.2#System_IO_Ports_SerialPort_NewLine
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.readline?view=netframework-4.7.2#System_IO_Ports_SerialPort_ReadLine
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.writeline?view=netframework-4.7.2#System_IO_Ports_SerialPort_WriteLine_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.parity?view=netframework-4.7.2#System_IO_Ports_SerialPort_Parity
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.parityreplace?view=netframework-4.7.2#System_IO_Ports_SerialPort_ParityReplace
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.portname?view=netframework-4.7.2#System_IO_Ports_SerialPort_PortName
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.readbuffersize?view=netframework-4.7.2#System_IO_Ports_SerialPort_ReadBufferSize
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.readtimeout?view=netframework-4.7.2#System_IO_Ports_SerialPort_ReadTimeout
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.receivedbytesthreshold?view=netframework-4.7.2#System_IO_Ports_SerialPort_ReceivedBytesThreshold
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.datareceived?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.rtsenable?view=netframework-4.7.2#System_IO_Ports_SerialPort_RtsEnable
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.component.site?view=netframework-4.7.2#System_ComponentModel_Component_Site
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.isite?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.component?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.component?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.stopbits?view=netframework-4.7.2#System_IO_Ports_SerialPort_StopBits
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.writebuffersize?view=netframework-4.7.2#System_IO_Ports_SerialPort_WriteBufferSize
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.writetimeout?view=netframework-4.7.2#System_IO_Ports_SerialPort_WriteTimeout

10

2. Serial Port

❖ Visual Studio Serial Port control: Methods

Close() Closes the port connection, sets the IsOpen property to false, and disposes of the internal Stream object.

CreateObjRef(Type)
Creates an object that contains all the relevant information required to generate a proxy used to communicate
with a remote object. (Inherited from MarshalByRefObject)

DiscardInBuffer() Discards data from the serial driver's receive buffer.

DiscardOutBuffer() Discards data from the serial driver's transmit buffer.

Dispose() Releases all resources used by the Component. (Inherited from Component)

Dispose(Boolean) Releases the unmanaged resources used by the SerialPort and optionally releases the managed resources.

Equals(Object) Determines whether the specified object is equal to the current object. (Inherited from Object)

GetHashCode() Serves as the default hash function. (Inherited from Object)

GetLifetimeService()
Retrieves the current lifetime service object that controls the lifetime policy for this instance. (Inherited
from MarshalByRefObject)

GetPortNames() Gets an array of serial port names for the current computer.

GetService(Type)
Returns an object that represents a service provided by the Component or by its Container. (Inherited
from Component)

GetType() Gets the Type of the current instance. (Inherited from Object)

InitializeLifetimeService()
Obtains a lifetime service object to control the lifetime policy for this instance. (Inherited from
MarshalByRefObject)

MemberwiseClone() Creates a shallow copy of the current Object. (Inherited from Object)

https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.close?view=netframework-4.7.2#System_IO_Ports_SerialPort_Close
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.isopen?view=netframework-4.7.2#System_IO_Ports_SerialPort_IsOpen
https://docs.microsoft.com/en-us/dotnet/api/system.io.stream?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.marshalbyrefobject.createobjref?view=netframework-4.7.2#System_MarshalByRefObject_CreateObjRef_System_Type_
https://docs.microsoft.com/en-us/dotnet/api/system.marshalbyrefobject?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.discardinbuffer?view=netframework-4.7.2#System_IO_Ports_SerialPort_DiscardInBuffer
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.discardoutbuffer?view=netframework-4.7.2#System_IO_Ports_SerialPort_DiscardOutBuffer
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.component.dispose?view=netframework-4.7.2#System_ComponentModel_Component_Dispose
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.component?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.component?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.dispose?view=netframework-4.7.2#System_IO_Ports_SerialPort_Dispose_System_Boolean_
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.object.equals?view=netframework-4.7.2#System_Object_Equals_System_Object_
https://docs.microsoft.com/en-us/dotnet/api/system.object?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.object.gethashcode?view=netframework-4.7.2#System_Object_GetHashCode
https://docs.microsoft.com/en-us/dotnet/api/system.object?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.marshalbyrefobject.getlifetimeservice?view=netframework-4.7.2#System_MarshalByRefObject_GetLifetimeService
https://docs.microsoft.com/en-us/dotnet/api/system.marshalbyrefobject?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.getportnames?view=netframework-4.7.2#System_IO_Ports_SerialPort_GetPortNames
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.component.getservice?view=netframework-4.7.2#System_ComponentModel_Component_GetService_System_Type_
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.component?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.container?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.component?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.object.gettype?view=netframework-4.7.2#System_Object_GetType
https://docs.microsoft.com/en-us/dotnet/api/system.type?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.object?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.marshalbyrefobject.initializelifetimeservice?view=netframework-4.7.2#System_MarshalByRefObject_InitializeLifetimeService
https://docs.microsoft.com/en-us/dotnet/api/system.marshalbyrefobject?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.object.memberwiseclone?view=netframework-4.7.2#System_Object_MemberwiseClone
https://docs.microsoft.com/en-us/dotnet/api/system.object?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.object?view=netframework-4.7.2

11

2. Serial Port

❖ Visual Studio Serial Port control: Methods
MemberwiseClone(Boolean) Creates a shallow copy of the current MarshalByRefObject object. (Inherited from MarshalByRefObject)

Open() Opens a new serial port connection.

Read(Byte[], Int32, Int32)
Reads a number of bytes from the SerialPort input buffer and writes those bytes into a byte array at the
specified offset.

Read(Char[], Int32, Int32)
Reads a number of characters from the SerialPort input buffer and writes them into an array of characters at
a given offset.

ReadByte() Synchronously reads one byte from the SerialPort input buffer.

ReadChar() Synchronously reads one character from the SerialPort input buffer.

ReadExisting()
Reads all immediately available bytes, based on the encoding, in both the stream and the input buffer of
the SerialPort object.

ReadLine() Reads up to the NewLine value in the input buffer.

ReadTo(String) Reads a string up to the specified value in the input buffer.

ToString()
Returns a String containing the name of the Component, if any. This method should not be overridden.
(Inherited from Component)

Write(Byte[], Int32, Int32) Writes a specified number of bytes to the serial port using data from a buffer.

Write(Char[], Int32, Int32) Writes a specified number of characters to the serial port using data from a buffer.

Write(String) Writes the specified string to the serial port.

WriteLine(String) Writes the specified string and the NewLine value to the output buffer.

https://docs.microsoft.com/en-us/dotnet/api/system.marshalbyrefobject.memberwiseclone?view=netframework-4.7.2#System_MarshalByRefObject_MemberwiseClone_System_Boolean_
https://docs.microsoft.com/en-us/dotnet/api/system.marshalbyrefobject?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.marshalbyrefobject?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.open?view=netframework-4.7.2#System_IO_Ports_SerialPort_Open
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.read?view=netframework-4.7.2#System_IO_Ports_SerialPort_Read_System_Byte___System_Int32_System_Int32_
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.read?view=netframework-4.7.2#System_IO_Ports_SerialPort_Read_System_Char___System_Int32_System_Int32_
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.readbyte?view=netframework-4.7.2#System_IO_Ports_SerialPort_ReadByte
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.readchar?view=netframework-4.7.2#System_IO_Ports_SerialPort_ReadChar
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.readexisting?view=netframework-4.7.2#System_IO_Ports_SerialPort_ReadExisting
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.readline?view=netframework-4.7.2#System_IO_Ports_SerialPort_ReadLine
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.newline?view=netframework-4.7.2#System_IO_Ports_SerialPort_NewLine
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.readto?view=netframework-4.7.2#System_IO_Ports_SerialPort_ReadTo_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.component.tostring?view=netframework-4.7.2#System_ComponentModel_Component_ToString
https://docs.microsoft.com/en-us/dotnet/api/system.string?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.component?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.component?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.write?view=netframework-4.7.2#System_IO_Ports_SerialPort_Write_System_Byte___System_Int32_System_Int32_
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.write?view=netframework-4.7.2#System_IO_Ports_SerialPort_Write_System_Char___System_Int32_System_Int32_
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.write?view=netframework-4.7.2#System_IO_Ports_SerialPort_Write_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.writeline?view=netframework-4.7.2#System_IO_Ports_SerialPort_WriteLine_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.newline?view=netframework-4.7.2#System_IO_Ports_SerialPort_NewLine

12

2. Serial Port

❖ Visual Studio Serial Port control: Events

DataReceived Indicates that data has been received through a port represented by
the SerialPort object.

Disposed Occurs when the component is disposed by a call to
the Dispose() method. (Inherited from Component)

ErrorReceived Indicates that an error has occurred with a port represented by
a SerialPort object.

PinChanged Indicates that a non-data signal event has occurred on the port
represented by the SerialPort object.

https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.datareceived?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.component.disposed?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.component.dispose?view=netframework-4.7.2#System_ComponentModel_Component_Dispose
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.component?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.errorreceived?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport.pinchanged?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport?view=netframework-4.7.2

13

2. Serial Port

❖ Visual Studio Serial Port control: Remarks

• Use this class to control a serial port file resource. This class provides
synchronous and event-driven I/O, access to pin and break states, and access
to serial driver properties. Additionally, the functionality of this class can be
wrapped in an internal Stream object, accessible through the BaseStream
property, and passed to classes that wrap or use streams.

• The SerialPort class supports the following encodings: ASCIIEncoding,
UTF8Encoding, UnicodeEncoding, UTF32Encoding, and any encoding defined
in mscorlib.dll where the code page is less than 50000 or the code page is
54936. You can use alternate encodings, but you must use the ReadByte or
Write method and perform the encoding yourself.

https://msdn.microsoft.com/en-us/library/system.io.stream.aspx
https://msdn.microsoft.com/en-us/library/system.io.ports.serialport.basestream.aspx
https://msdn.microsoft.com/en-us/library/system.text.asciiencoding.aspx
https://msdn.microsoft.com/en-us/library/system.text.utf8encoding.aspx
https://msdn.microsoft.com/en-us/library/system.text.unicodeencoding.aspx
https://msdn.microsoft.com/en-us/library/system.text.utf32encoding.aspx
https://msdn.microsoft.com/en-us/library/system.io.ports.serialport.readbyte.aspx
https://msdn.microsoft.com/en-us/library/ms143551.aspx

14

2. Serial Port

❖ Visual Studio Serial Port control: Remarks

• You use the GetPortNames method to retrieve the valid ports for the current
computer.

• If a SerialPort object becomes blocked during a read operation, do not abort
the thread. Instead, either close the base stream or dispose of the SerialPort
object.

https://msdn.microsoft.com/en-us/library/system.io.ports.serialport.getportnames.aspx

15

2. Serial Port

❖ Serial Port data over USB

16

2. Serial Port

❖ Serial Port data over USB

17

2. Serial Port

❖ Visual Studio Serial Port control in C++/CLI

18

2. Serial Port

❖ Visual Studio Serial Port control in C++/CLI

▪ Find Ports

19

2. Serial Port

❖ Visual Studio Serial Port control in C++/CLI

▪ Initialize Port

20

2. Serial Port

❖ Visual Studio Serial Port control in C++/CLI

▪ Close Port

21

3. Read Data

❖ Visual Studio Serial Port control in C++/CLI

▪ Read Data

22

3. Read Data

❖ Example: Read data from Arduino

• Arduino code

23

4. Send Data

❖ Visual Studio Serial Port control in C++/CLI

❖ Send Data

24

4. Send Data

❖ Example: Turn led ON/OFF

• C++/CLI code

25

4. Send Data

❖ Example: Turn led ON/OFF

• C++/CLI code

// grab text and store in send
buffer
String^ message = "ON";
// write to serial
if (this->serialPort1->IsOpen)
this->serialPort1-
>Write(message);
else
this->textBoxSendData->Text =
"Port Not Opened";

// grab text and store in send
buffer
String^ message = "OFF";
// write to serial
if (this->serialPort1->IsOpen)
this->serialPort1-
>Write(message);
else
this->textBoxSendData->Text =
"Port Not Opened";

Turn led ON Turn led OFF

26

4. Send Data

❖ Example: Turn led ON/OFF

• Arduino code

27

4. Send Data

❖ Example: Turn led ON/OFF

• Arduino code

28

4. Send Data

❖ Example: Turn led ON/OFF

• Circuit Diagram

29

5. Real-Time Data Transfer

❖ Serial Data Received Event Handler

▪ Example: Read and Display Temperature

30

5. Real-Time Data Transfer

❖ Serial Data Received Event Handler

▪ Example: Read and Display Temperature

• C++/CLI Code private: System::Void serialPort1_DataReceived(System::Object^ sender,
System::IO::Ports::SerialDataReceivedEventArgs^ e) {
// check if port is ready for reading
if (this->serialPort1->IsOpen) {
// Reset the text in the result label.
this->labelTemperature->Text = String::Empty;

// this will read manually
try {
this->labelTemperature->Text = this->serialPort1->ReadLine();
}
catch (TimeoutException^) {
this->labelTemperature->Text = "None";
}
// Disable the init button
// the asynchronous operation is done.
this->buttonInitialPort->Enabled = false;
}
else
// give error warning
this->textBoxReceivedData->Text = "Port Not Opened";
}

31

5. Real-Time Data Transfer

❖ Serial Data Received Event Handler

▪ Example: Read and Display Temperature

• Arduino Coding

32

5. Real-Time Data Transfer

❖ Serial Data Received Event Handler

▪ Example: Read and Display Temperature

• Circuit Diagram

33

5. Real-Time Data Transfer

❖ Timer

▪ Example: Read and Display Temperature

• C++/CLI Code

34

5. Real-Time Data Transfer

❖ Timer

▪ Example: Read and Display Temperature

• C++/CLI Code

35

5. Real-Time Data Transfer

❖ Timer

▪ Example: Read and Display Temperature

• C++/CLI Code

36

5. Real-Time Data Transfer

❖ Multithreading

▪ Example: Read and Display Temperature

• C++/CLI Code

37

5. Real-Time Data Transfer

❖ Multithreading

▪ Example: Read and Display Temperature

• C++/CLI Code

38

5. Real-Time Data Transfer

❖ Multithreading

▪ Example: Read and Display Temperature

• C++/CLI Code

KỸ THUẬT LẬP TRÌNH HỆ CƠ ĐIỆN TỬ

Programming Engineering in Mechatronics

1

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Giảng viên: TS. Nguyễn Thành Hùng

Đơn vị: NCM Robot, Khoa Cơ điện tử, Trường Cơ khí

Hà Nội, 2022

2

Chapter V. Hardware Interface Programming

❖ 1. Giới thiệu

❖ 2. Các chuẩn giao tiếp và giao thức truyền thông công nghiệp

❖ 3. Truyền thông nối tiếp với Qt

❖ 4. Đa luồng trong Qt

❖ 5. Lập trình giao tiếp với Arduino

❖ 6. Lập trình giao tiếp với camera

1. Giới thiệu

❖Giao diện là sự kết nối và tương tác giữa phần cứng, phần mềm và người dùng.

➢Người dùng "giao tiếp" với phần mềm.

➢Phần mềm "giao tiếp" với phần cứng và phần mềm khác.

➢Phần cứng "giao tiếp" với phần cứng khác.

➢Giao diện phải được thiết kế, phát triển, thử nghiệm và thiết kế lại.

3

1. Giới thiệu

❖Giao diện phần cứng: là phích cắm, ổ cắm, cáp và tín hiệu điện truyền qua

chúng. Ví dụ như USB, FireWire, Ethernet, ATA/IDE, SCSI và PCI.

❖Phần mềm / Giao diện lập trình: là ngôn ngữ, mã và thông điệp mà các chương

trình sử dụng để giao tiếp với nhau và với phần cứng.

➢Hệ điều hành Windows, Mac và Linux

➢Email SMTP

➢Giao thức mạng IP

➢Trình điều khiển phần mềm kích hoạt các thiết bị ngoại vi

➢…
4

1. Giới thiệu

❖Giao diện người dùng: bàn phím, chuột, các câu lệnh và menu được sử dụng để

giao tiếp giữa người dùng và máy tính.

➢Định dạng & Chức năng: định dạng (tiêu đề, nội dung, đoạn giới thiệu, v.v.),

chức năng (đọc, ghi, truyền, nhận, kiểm tra lỗi, phương pháp truy cập, giao thức

liên kết dữ liệu, …)

➢Ngôn ngữ & Lập trình:

➢Giao diện người dùng, Giao thức, API và ABI

5

6

Chapter V. Hardware Interface Programming

❖ 1. Giới thiệu

❖ 2. Các chuẩn giao tiếp và giao thức truyền thông công nghiệp

❖ 3. Truyền thông nối tiếp với Qt

❖ 4. Đa luồng trong Qt

❖ 5. Lập trình giao tiếp với Arduino

❖ 6. Lập trình giao tiếp với camera

2. Các chuẩn giao tiếp và giao thức truyền thông công nghiệp

❖Cổng nối tiếp

➢Các cổng hoạt động theo nguyên lý nối tiếp

➢Các cổng nối tiếp thông dụng được sử dụng trong truyền

thông công nghiệp như: COM, RS232/RS422/RS485, v.v.

7

➢Giao tiếp nối tiếp chậm hơn so với giao tiếp song song, tuy nhiên được dùng phổ

biến để truyền dữ liệu dài bởi chi phí thấp hơn.

➢RS232 (DB9 hay COM): Tốc độ truyền của cổng RS232 được dùng phổ biến như:

9600, 14400, 28800 và 33600. Tốc độ truyền dữ liệu có thể ở mức 20 kb/s. Chiều

dài cáp tối đa là 15 mét.

2. Các chuẩn giao tiếp và giao thức truyền thông công nghiệp

❖Cổng nối tiếp

➢RS422: Với chiều dài đường truyền là 40 feet (12m) thì tốc độ truyền tối đa là 10

Mbits/s, 400 feet (122m) là 1 Mbits/s và 4000 feet (1219m) là 100 kbits/s. Hiện

nay chuẩn truyền thông công nghiệp RS422 gần như không được sử dụng.

➢RS485: Có thể coi RS485 là một phiên bản nâng cấp của RS422. RS485 cho

phép kết nối và truyền dữ liệu với tối đa 32 cặp thu phát trên đường truyền cùng

một lúc. Với chiều dài đường truyền là 40 feet (12m) thì tốc độ truyền tối đa là

10 Mbits/s, 400 feet (122m) là 1 Mbits/s và 4000 feet (1219m) là 100 kbits/s.

8

2. Các chuẩn giao tiếp và giao thức truyền thông công nghiệp

❖USB (Universal Serial Bus)

➢Kết nối các thiết bị (điện thoại, máy tính

bảng, máy chụp ảnh, máy quay phim,

máy nghe nhạc hoặc các thiết bị công

nghiệp khác như bộ thu thập dữ liệu,

remote I/O, v.v. với máy tính.

➢USB có 2 loại chính là cổng USB 2.0 và

cổng USB 3.0

➢Về lí thuyết thì tốc độ ghi chép dữ liệu

của USB 2.0 là 60 MB/s, còn USB 3.0

là 600 – 625 MB/s. 9

2. Các chuẩn giao tiếp và giao thức truyền thông công nghiệp

❖Ethernet (LAN, RJ45)

➢Ethernet là một dạng công nghệ truyền thông dùng

để kết nối các mạng LAN cục bộ, cho phép các thiết

bị có thể giao tiếp với nhau thông qua một giao thức

– một bộ quy tắc hoặc ngôn ngữ mạng chung.

➢So với công nghệ mạng LAN không dây, Ethernet

thường ít bị gián đoạn hơn – cho dù là do nhiễu

sóng vô tuyến, trở ngại vật lý hay băng thông.

➢Tốc độ chuẩn cho hệ thống Ethernet hiện nay là

100-Mbps, 1000-Mbps.

10

2. Các chuẩn giao tiếp và giao thức truyền thông công nghiệp

❖MODBUS

➢Modbus là một chuẩn truyền thông công

nghiệp được Modicon phát triển từ năm

1979 để thay thế các chuẩn truyền thông

truyền thống trước đó.

➢Cách thức hoạt động của Modbus là dựa

trên nguyên tắc Master – Slave (bên nhận

– bên gửi tín hiệu), nhằm truyền dữ liệu

từ các thiết bị đầu cuối về PLC hoặc

SCADA.

11

2. Các chuẩn giao tiếp và giao thức truyền thông công nghiệp

❖MODBUS

➢Modbus đã trở thành một chuẩn truyền thông công nghiệp tiêu chuẩn và phổ biến

nhờ sự ổn định, đơn giản, dễ sử dụng và miễn phí.

➢Các thiết bị chỉ cần cùng chung một chuẩn với nhau thì có thể giao tiếp với nhau

mà không cần quan tâm về loại thiết bị hay hãng sản xuất.

➢Nhờ đó, các nhà sản xuất đã tích hợp chuẩn Modbus vào sản phẩm của họ để

tăng tính linh hoạt mà không cần trả phí bản quyền.

12

2. Các chuẩn giao tiếp và giao thức truyền thông công nghiệp

❖UART (Universal Asynchronous Receiver – Transmitter)

➢UART là một mạch tích hợp được sử dụng trong việc truyền dẫn dữ liệu nối tiếp

giữa máy tính và các thiết bị ngoại vi.

➢Trong UART, giao tiếp giữa hai thiết bị có thể được thực hiện theo hai phương

thức là giao tiếp dữ liệu nối tiếp và giao tiếp dữ liệu song song.

➢UART thường được sử dụng trong các bộ vi điều khiển có các yêu cầu chính xác

và chúng cũng có sẵn trong các thiết bị liên lạc khác nhau như giao tiếp không

dây, thiết bị GPS, mô-đun Bluetooth và nhiều ứng dụng khác.

13

2. Các chuẩn giao tiếp và giao thức truyền thông công nghiệp

❖UART (Universal Asynchronous Receiver – Transmitter)

➢UART là một mạch tích hợp được sử dụng trong việc truyền dẫn dữ liệu nối tiếp

giữa máy tính và các thiết bị ngoại vi.

➢Trong UART, giao tiếp giữa hai thiết bị có thể được thực hiện theo hai phương

thức là giao tiếp dữ liệu nối tiếp và giao tiếp dữ liệu song song.

➢UART thường được sử dụng trong các bộ vi điều khiển có các yêu cầu chính xác

và chúng cũng có sẵn trong các thiết bị liên lạc khác nhau như giao tiếp không

dây, thiết bị GPS, mô-đun Bluetooth và nhiều ứng dụng khác.

14

15

Chapter V. Hardware Interface Programming

❖ 1. Giới thiệu

❖ 2. Các chuẩn giao tiếp và giao thức truyền thông công nghiệp

❖ 3. Truyền thông nối tiếp với Qt

❖ 4. Đa luồng trong Qt

❖ 5. Lập trình giao tiếp với Arduino

❖ 6. Lập trình giao tiếp với camera

❖ Giới thiệu về QtSerialPort

▪ QtSerialPort cung cấp chức năng cơ bản, bao gồm cấu hình, hoạt động I/O,

nhận và thiết lập tín hiệu điều khiển của sơ đồ chân RS-232.

▪ Mô-đun QtSerialPort là một mô-đun bổ sung cho thư viện Qt5, cung cấp một

giao diện duy nhất cho cả phần cứng và cổng nối tiếp ảo.

▪ Giao diện nối tiếp, do tính đơn giản và độ tin cậy của chúng, vẫn còn phổ biến

trong một số ngành công nghiệp như phát triển hệ thống nhúng, người máy, v.v.

▪ Sử dụng mô-đun QtSerialPort, các nhà phát triển có thể giảm đáng kể thời gian

cần thiết để triển khai các ứng dụng Qt yêu cầu quyền truy cập vào giao diện nối

tiếp.

https://wiki.qt.io/Qt_Serial_Port 16

3. Truyền thông nối tiếp với Qt

❖ Giới thiệu về QtSerialPort

▪ Các tính năng sau không được mô-đun này hỗ trợ:

➢ Các tính năng đầu cuối, chẳng hạn như tiếng vang (echo), điều khiển CR/LF, v.v.

➢ Chế độ văn bản

➢ Định cấu hình thời gian chờ và độ trễ khi đọc hoặc viết

➢ Thông báo thay đổi tín hiệu sơ đồ chân

➢ Các điều kiện thu phát đặc biệt, như lỗi Framing, lỗi chẵn lẻ và lỗi điều kiện

Break.

https://wiki.qt.io/Qt_Serial_Port 17

3. Truyền thông nối tiếp với Qt

❖ Qt Serial Port: Chức năng

▪ QSerialPort: QSerialPort là lớp cơ sở của mô-đun và cung cấp một tập hợp các

phương thức và thuộc tính cơ bản để truy cập tài nguyên trên các cổng nối tiếp.

Hỗ trợ các hệ điều hành sau:

https://wiki.qt.io/Qt_Serial_Port 18

3. Truyền thông nối tiếp với Qt

Hệ điều hành Hỗ trợ Chú ý

Windows XP/Vista/7/8/10 Có Hỗ trợ đầy đủ

Windows CE Không (từ Qt5.7) Chỉ được thử nghiệm trên 5 và 6 nền tảng trong trình giả lập

Gnu/Linux Có Hỗ trợ đầy đủ

MacOSX Có Hỗ trợ đầy đủ

Others Unix Có Tất cả tương thích với POSIX

❖ Qt Serial Port: Chức năng

▪ QSerialPortInfo: QSerialPortInfo là một lớp trợ giúp. Lớp này cung cấp thông tin

về các cổng nối tiếp có sẵn trên hệ thống. Hỗ trợ các hệ điều hành sau:

https://wiki.qt.io/Qt_Serial_Port 19

3. Truyền thông nối tiếp với Qt

Hệ điều hành Hỗ trợ Chú ý

Windows

XP/Vista/7/8/10
Có Hỗ trợ đầy đủ (sử dụng SetupAPI)

Windows CE Không (từ Qt5.7) Chỉ được thử nghiệm trên 5 và 6 nền tảng trong trình giả lập

Gnu/Linux Có
Hỗ trợ đầy đủ (sử dụng libudev, sysfs hoặc tìm kiếm đơn giản trong

/dev)

MacOSX Có Hỗ trợ đầy đủ

Others Unix Có Tất cả tương thích với POSIX (chỉ tìm kiếm đơn giản trong /dev)

❖ Qt Serial Port: Functionality

▪ QSerialPort:

➢ How to use?

➢ To link against the module, add this line to your qmake .pro file:

https://doc.qt.io/qt-5/qtserialport-index.html 20

3. Truyền thông nối tiếp với Qt

❖ Qt Serial Port: Example

https://wiki.qt.io/Qt_Serial_Port 21

3. Truyền thông nối tiếp với Qt

#include <QCoreApplication>

#include <QDebug>

#include <QSerialPort>

#include <QSerialPortInfo>

QT_USE_NAMESPACE

int main(int argc, char *argv[])

{

QCoreApplication a(argc, argv);

// Example use QSerialPortInfo

foreach (const QSerialPortInfo &info, QSerialPortInfo::availablePorts()) {

qDebug() << "Name : " << info.portName();

qDebug() << "Description : " << info.description();

qDebug() << "Manufacturer: " << info.manufacturer();

// Example use QSerialPort

QSerialPort serial;

serial.setPort(info);

if (serial.open(QIODevice::ReadWrite))

serial.close();

}

return a.exec();

}

22

Chapter V. Hardware Interface Programming

❖ 1. Giới thiệu

❖ 2. Các chuẩn giao tiếp và giao thức truyền thông công nghiệp

❖ 3. Truyền thông nối tiếp với Qt

❖ 4. Đa luồng trong Qt

❖ 5. Lập trình giao tiếp với Arduino

❖ 6. Lập trình giao tiếp với camera

❖ Lớp QThread được sử dụng để xử lý tất cả các loại chức năng đa

luồng

▪ QThread: Lớp này là cơ sở của tất cả các luồng trong Qt.

▪ QThreadPool: Lớp này có thể được sử dụng để quản lý các luồng và giúp giảm

chi phí tạo luồng bằng cách cho phép các luồng hiện có được sử dụng lại cho

các mục đích mới.

▪ QRunnable: Lớp này cung cấp một cách khác để tạo luồng và nó là cơ sở của

tất cả các đối tượng có thể chạy trong Qt.

23

4. Đa luồng trong Qt

❖ Lớp QThread được sử dụng để xử lý tất cả các loại chức năng đa

luồng

▪ QMutex, QMutexLocker, QSemaphore, QWaitCondition, QReadLocker,

QWriteLocker và QWriteLocke: Các lớp này được sử dụng để giải quyết các tác

vụ đồng bộ hóa liên luồng. Tùy thuộc vào tình huống, các lớp này có thể được

sử dụng để tránh các vấn đề như các luồng ghi đè tính toán của nhau, các luồng

cố gắng đọc hoặc ghi vào một thiết bị chỉ có thể xử lý một luồng tại một thời

điểm và nhiều vấn đề tương tự. Thông thường cần phải xử lý thủ công các vấn

đề như vậy khi tạo các ứng dụng đa luồng.

24

4. Đa luồng trong Qt

❖ Lớp QThread được sử dụng để xử lý tất cả các loại chức năng đa

luồng

▪ QtConcurrent: Không gian tên này có thể được sử dụng để tạo các ứng dụng đa

luồng bằng cách sử dụng API cấp cao. Nó giúp việc viết các ứng dụng đa luồng

trở nên dễ dàng hơn mà không cần phải xử lý các vấn đề về mutexes,

semaphores và đồng bộ hóa liên luồng.

▪ QFuture, QFutureWatcher, QFututeIterator và QFutureSynchronizer: Tất cả các

lớp này đều được sử dụng cùng với không gian tên QtConcurrent để xử lý kết

quả hoạt động đa luồng và không đồng bộ.

25

4. Đa luồng trong Qt

❖ Có hai cách tiếp cận khác nhau đối với đa luồng trong Qt.

▪ Cách tiếp cận đầu tiên, dựa trên QThread, là cách tiếp cận cấp thấp cung cấp

nhiều tính linh hoạt và khả năng kiểm soát đối với các luồng nhưng đòi hỏi nhiều

mã hóa và cẩn thận hơn để hoạt động hoàn hảo.

▪ Cách tiếp cận thứ hai dựa trên không gian tên QtConcurrent (hoặc khung Qt

Concurrency), là cách tiếp cận cấp cao để tạo và chạy nhiều tác vụ trong một

ứng dụng.

26

4. Đa luồng trong Qt

❖ Đa luồng mức thấp sử dụng QThread

▪ Sử dụng lớp con Qthread: Example

➢ Tạo ứng dụng MultithreadedCV

➢ Thêm thư viện OpenCV

➢ Thêm hai tiện ích nhãn vào giao diện

27

4. Đa luồng trong Qt

❖ Đa luồng mức thấp sử dụng QThread

▪ Sử dụng lớp con Qthread: Example

➢ Tạo một lớp mới có tên là VideoProcessorThread

28

4. Đa luồng trong Qt

❖ Đa luồng mức thấp sử dụng QThread

▪ Sử dụng lớp con Qthread: Example

➢ Tạo một lớp mới có tên là VideoProcessorThread

29

4. Đa luồng trong Qt

❖ Đa luồng mức thấp sử dụng QThread

▪ Sử dụng lớp con Qthread: Example

➢ Hàm start: được sử dụng để bắt đầu một luồng nếu nó chưa được bắt đầu.

➢ Hàm terminate: buộc một luồng phải kết thúc.

➢ Hàm wait: sử dụng để chặn một luồng (buộc chờ đợi) cho đến khi luồng kết thúc hoặc

đạt đến giá trị thời gian chờ (tính bằng mili giây).

30

4. Đa luồng trong Qt

❖ Đa luồng mức thấp sử dụng QThread

▪ Sử dụng lớp con Qthread: Example

➢ mainwindow.h

31

4. Đa luồng trong Qt

❖ Đa luồng mức thấp sử dụng QThread

▪ Sử dụng lớp con Qthread: Example

➢ mainwindow.cpp

32

4. Đa luồng trong Qt

❖ Đa luồng mức thấp sử dụng QThread

▪ Sử dụng lớp con Qthread: Example

➢ Build and Run program

33

4. Đa luồng trong Qt

❖ Đa luồng mức thấp sử dụng QThread

▪ Sử dụng hàm moveToThread: Example

➢ Tạo lớp mới VideoProcessor

34

4. Đa luồng trong Qt

❖ Đa luồng mức thấp sử dụng QThread

▪ Sử dụng hàm moveToThread: Example

➢ Tạo lớp mới VideoProcessor

35

4. Đa luồng trong Qt

❖ Đa luồng mức thấp sử dụng QThread

▪ Sử dụng hàm moveToThread: Example

➢ Mainwindow.h

36

4. Đa luồng trong Qt

❖ Đa luồng mức thấp sử dụng QThread

▪ Sử dụng hàm moveToThread: Example

➢ Mainwindow.cpp

37

4. Đa luồng trong Qt

❖ Đa luồng mức thấp sử dụng QThread

▪ Sử dụng hàm moveToThread: Example

➢ Build and Run program

38

4. Đa luồng trong Qt

❖ Công cụ đồng bộ hóa luồng

▪ Mutex

➢ Giả sử rằng một luồng đang đọc một biến lớp Mat có tên là image mọi lúc bằng cách sử

dụng các dòng mã sau:

39

4. Đa luồng trong Qt

 forever

{

 image = imread("image.jpg");

}

➢ Luồng thứ hai khác đang sửa hình ảnh này mọi thời gian

 forever

{

 cvtColor(image, image, CV_BGR2GRAY);

 resize(image, image, Size(), 0.5, 0.5);

}

❖ Công cụ đồng bộ hóa luồng

▪ Mutex

➢ Nếu hai luồng này chạy cùng một lúc, thì tại một số điểm, hàm imread của luồng đầu

tiên có thể được gọi sau cvtColor và trước hàm resize trong luồng thứ hai.

➢ Giải pháp cho vấn đề này được gọi là tuần tự hóa truy cập, và trong lập trình đa luồng,

nó thường được giải quyết bằng cách sử dụng các đối tượng mutex.

➢ Một mutex chỉ đơn giản là một phương tiện bảo vệ và ngăn một cá thể đối tượng bị truy

cập bởi nhiều luồng tại một thời điểm.

40

4. Đa luồng trong Qt

❖ Công cụ đồng bộ hóa luồng

▪ Mutex

➢ Với luồng 1

41

4. Đa luồng trong Qt

 forever

{

 imageMutex.lock();

 image = imread("image.jpg");

 imageMutex.unlock();

}

➢ Với luồng 2
 forever

{

 imageMutex.lock();

 cvtColor(image, image, CV_BGR2GRAY);

 resize(image, image, Size(), 0.5, 0.5);

 imageMutex.unlock();

}

❖ Công cụ đồng bộ hóa luồng

▪ Mutex: khi làm việc với Qt, tốt nhất là sử dụng lớp QMutexLocker để đảm nhận

việc khóa và mở khóa mutex.

➢ Với luồng 1 và 2

42

4. Đa luồng trong Qt

 forever

{

 QMutexLocker locker(&imageMutex);

 image = imread("image.jpg");

}

forever

{

 QMutexLocker locker(&imageMutex);

 cvtColor(image, image, CV_BGR2GRAY);

 resize(image, image, Size(), 0.5, 0.5);

}

❖ Công cụ đồng bộ hóa luồng

▪ Các khóa đọc - ghi

➢ Mutex khá hữu ích cho việc tuần tự hóa truy cập, nhưng chúng không thể được sử

dụng hiệu quả cho các trường hợp như tuần tự hóa đọc-ghi

➢ Sử dụng các Khóa Đọc-Ghi để kiểm soát tuần tự đọc – ghi: QReadWriteLock

43

4. Đa luồng trong Qt

 forever

{

 lock.lockForRead();

 read_image();

 lock.unlock();

}

 forever

{

 lock.lockForWrite();

 write_image();

 lock.unlock();

}

❖ Công cụ đồng bộ hóa luồng

▪ Các khóa đọc - ghi

➢ Để dễ dàng hơn, chúng ta có thể sử dụng các lớp QReadLocker và QWriteLocker để

khóa và mở khóa QReadWriteLock tương ứng

44

4. Đa luồng trong Qt

 forever

{

 QReadLocker locker(&lock);

 Read_image();

}

 forever

{

 QWriteLocker locker(&lock);

 write_image();

}

❖ Công cụ đồng bộ hóa luồng

▪ Semaphore

➢ Trong lập trình đa luồng, chúng ta cần đảm bảo rằng nhiều luồng có thể truy cập một số

tài nguyên giống nhau có giới hạn.

➢ Vấn đề này và các vấn đề tương tự trong lập trình đa luồng thường được xử lý bằng

cách sử dụng các semaphore.

➢ Semaphore tương tự như mutex nâng cao, không chỉ có khả năng khóa và mở khóa mà

còn theo dõi số lượng tài nguyên có sẵn.

45

4. Đa luồng trong Qt

❖ Công cụ đồng bộ hóa luồng

▪ Semaphore

➢ Giả sử chúng ta có 100 megabyte dung lượng bộ nhớ có sẵn để được sử dụng bởi tất

cả các luồng của chúng ta và mỗi luồng yêu cầu X số megabyte để thực hiện nhiệm vụ

của nó, tùy thuộc vào luồng.

➢ X không giống nhau trong tất cả các luồng và giả sử là nó được tính toán bằng cách sử

dụng kích thước của hình ảnh sẽ được xử lý trong luồng hoặc bất kỳ phương pháp nào

khác.

➢ Chúng ta có thể sử dụng lớp QSemaphore để đảm bảo các luồng của chúng ta chỉ truy

cập vào không gian bộ nhớ có sẵn chứ không phải nhiều hơn.

46

4. Đa luồng trong Qt

❖ Công cụ đồng bộ hóa luồng

▪ Semaphore

➢ Tạo một semaphore

➢ Bên trong mỗi luồng, trước và sau quá trình thâm dụng bộ nhớ, chúng ta sẽ thu nhận và

giải phóng không gian bộ nhớ cần thiết

47

4. Đa luồng trong Qt

 QSemaphore memSem(100);

 memSem.acquire(X);

process_image(); // memory intensive process

memSem.release(X);

❖ Công cụ đồng bộ hóa luồng

▪ Các điều kiện chờ

➢ Một vấn đề phổ biến khác trong lập trình đa luồng có thể xảy ra là một luồng nhất định

phải chờ một số điều kiện khác với luồng đang được thực thi bởi hệ điều hành.

➢ Người ta sẽ mong đợi rằng luồng cần đợi một điều kiện, sẽ chuyển sang trạng thái ngủ

sau khi nó giải phóng khóa mutex hoặc khóa đọc-ghi để các luồng khác tiếp tục hoạt

động và khi điều kiện được đáp ứng, nó sẽ được đánh thức bởi một luồng khác.

➢ Lớp QWaitCondition được dành riêng để xử lý các vấn đề như chúng ta vừa đề cập.

48

4. Đa luồng trong Qt

❖ Công cụ đồng bộ hóa luồng

▪ Các điều kiện chờ

➢ Ví dụ luồng đọc ảnh

➢ Luồng đánh thức luồng đọc ảnh

49

4. Đa luồng trong Qt

 forever

{

 mutex.lock();

 imageExistsCond.wait(&mutex);

 read_image();

 mutex.unlock();

}

 forever

{

 if(QFile::exists("image.jpg"))

 imageExistsCond.wakeAll();

}

50

Chapter V. Hardware Interface Programming

❖ 1. Giới thiệu

❖ 2. Các chuẩn giao tiếp và giao thức truyền thông công nghiệp

❖ 3. Truyền thông nối tiếp với Qt

❖ 4. Đa luồng trong Qt

❖ 5. Lập trình giao tiếp với Arduino

❖ 6. Lập trình giao tiếp với camera

❖Serial Port data over USB

51

5. Lập trình giao tiếp với Arduino

❖Serial Port data over USB

52

5. Lập trình giao tiếp với Arduino

❖ Qt Serial Port Example

▪ Create new Qt Widgets Application

https://www.embarcados.com.br/serie/comunicacao-serial-com-arduino-utilizando-qt5/

Table1 - Components, Names, and Types Used in Qt5 Widgets
Name Component Description / Function

QLabel Application Title Label

QFormLayout Layout for organizing components in GroupBox

QGroupBox Serial Settings GroupBox

QLabel Door Label

comboBoxPort QComboBox ComboBox for Serial Ports

QLabel BaudRate Label

comboBoxBaudRate QComboBox ComboBox with BaudRate Values

pushButtonConnect QPushButton Connect button

pushButtonDisconnect QPushButton Disconnect button

lineEditSendData QLineEdit Command Text Input

pushButtonSendData QPushButton Button to send commands by serial

textEditGetData QTextEdit Application Log Text Box (Serial Reception)

53

5. Lập trình giao tiếp với Arduino

❖ Qt Serial Port Example

▪ Create new Qt Widgets Application

https://www.embarcados.com.br/serie/comunicacao-serial-com-arduino-utilizando-qt5/ 54

5. Lập trình giao tiếp với Arduino

❖ Qt Serial Port Example

▪ Create new Qt Widgets Application

https://www.embarcados.com.br/serie/comunicacao-serial-com-arduino-utilizando-qt5/

Table1 - Components, Names, and Types Used in Qt5 Widgets
Name Component Description / Function

QLabel Application Title Label

QFormLayout Layout for organizing components in GroupBox

QGroupBox Serial Settings GroupBox

QLabel Door Label

comboBoxPort QComboBox ComboBox for Serial Ports

QLabel BaudRate Label

comboBoxBaudRate QComboBox ComboBox with BaudRate Values

pushButtonConnect QPushButton Connect button

pushButtonDisconnect QPushButton Disconnect button

lineEditSendData QLineEdit Command Text Input

pushButtonSendData QPushButton Button to send commands by serial

textEditGetData QTextEdit Application Log Text Box (Serial Reception)

55

5. Lập trình giao tiếp với Arduino

❖ Qt Serial Port Example

▪ Add New > C++ Class

https://www.embarcados.com.br/serie/comunicacao-serial-com-arduino-utilizando-qt5/ 56

5. Lập trình giao tiếp với Arduino

❖ Qt Serial Port Example

▪ Add New > C++ Class

https://www.embarcados.com.br/serie/comunicacao-serial-com-arduino-utilizando-qt5/ 57

5. Lập trình giao tiếp với Arduino

❖ Qt Serial Port Example

▪ Add New > C++ Class

https://www.embarcados.com.br/serie/comunicacao-serial-com-arduino-utilizando-qt5/ 58

5. Lập trình giao tiếp với Arduino

❖ Qt Serial Port Example

▪ Edit the .pro file

https://www.embarcados.com.br/serie/comunicacao-serial-com-arduino-utilizando-qt5/ 59

5. Lập trình giao tiếp với Arduino

❖ Qt Serial Port Example

▪ Edit the comserial.h

https://www.embarcados.com.br/serie/comunicacao-serial-com-arduino-utilizando-qt5/ 60

5. Lập trình giao tiếp với Arduino

❖ Qt Serial Port Example

▪ Edit the comserial.cpp

https://www.embarcados.com.br/serie/comunicacao-serial-com-arduino-utilizando-qt5/ 61

5. Lập trình giao tiếp với Arduino

❖ Qt Serial Port Example

▪ Edit the comserial.cpp

https://www.embarcados.com.br/serie/comunicacao-serial-com-arduino-utilizando-qt5/ 62

5. Lập trình giao tiếp với Arduino

❖ Qt Serial Port Example

▪ Edit the comserial.cpp

https://www.embarcados.com.br/serie/comunicacao-serial-com-arduino-utilizando-qt5/ 63

5. Lập trình giao tiếp với Arduino

❖ Qt Serial Port Example

▪ Edit the comserial.cpp

https://www.embarcados.com.br/serie/comunicacao-serial-com-arduino-utilizando-qt5/ 64

5. Lập trình giao tiếp với Arduino

❖ Qt Serial Port Example

▪ Edit the comserial.cpp

https://www.embarcados.com.br/serie/comunicacao-serial-com-arduino-utilizando-qt5/ 65

5. Lập trình giao tiếp với Arduino

❖ Qt Serial Port Example

▪ Generate the Slot functions

https://www.embarcados.com.br/serie/comunicacao-serial-com-arduino-utilizando-qt5/ 66

5. Lập trình giao tiếp với Arduino

❖ Qt Serial Port Example

▪ Mainwindow.h

https://www.embarcados.com.br/serie/comunicacao-serial-com-arduino-utilizando-qt5/ 67

5. Lập trình giao tiếp với Arduino

❖ Qt Serial Port Example

▪ Mainwindow.cpp

https://www.embarcados.com.br/serie/comunicacao-serial-com-arduino-utilizando-qt5/ 68

5. Lập trình giao tiếp với Arduino

❖ Qt Serial Port Example

▪ Mainwindow.cpp

https://www.embarcados.com.br/serie/comunicacao-serial-com-arduino-utilizando-qt5/ 69

5. Lập trình giao tiếp với Arduino

❖ Qt Serial Port Example

▪ Mainwindow.cpp

https://www.embarcados.com.br/serie/comunicacao-serial-com-arduino-utilizando-qt5/ 70

5. Lập trình giao tiếp với Arduino

❖ Qt Serial Port Example

▪ Mainwindow.cpp

https://www.embarcados.com.br/serie/comunicacao-serial-com-arduino-utilizando-qt5/ 71

5. Lập trình giao tiếp với Arduino

❖ Example: Read data from Arduino (1)

• Arduino code

72

5. Lập trình giao tiếp với Arduino

❖ Example: Read data from Arduino (2)

• Arduino code

73

5. Lập trình giao tiếp với Arduino

❖ Example: Read data from Arduino (2)

• Arduino code

74

5. Lập trình giao tiếp với Arduino

❖ Qt Serial Port Example

▪ Mainwindow.cpp

https://www.embarcados.com.br/serie/comunicacao-serial-com-arduino-utilizando-qt5/ 75

5. Lập trình giao tiếp với Arduino

❖ Example: Turn led ON/OFF

• Qt code

Turn led ON Turn led OFF

76

5. Lập trình giao tiếp với Arduino

❖ Example: Turn led ON/OFF

• Arduino code

77

5. Lập trình giao tiếp với Arduino

❖ Example: Turn led ON/OFF

• Arduino code

78

5. Lập trình giao tiếp với Arduino

❖ Example: Turn led ON/OFF

• Circuit Diagram

79

5. Lập trình giao tiếp với Arduino

❖Truyền thông nối tiếp thời gian thực sử dụng Qthread

➢ Example: Read and Display Temperature

• Giao diện Qt

80

5. Lập trình giao tiếp với Arduino

❖ Example: Read and Display Temperature

• Giao diện Qt

81

5. Lập trình giao tiếp với Arduino

❖ Example: Read and Display Temperature

• Mainwindow.h

82

5. Lập trình giao tiếp với Arduino

 #ifndef MAINWINDOW_H

#define MAINWINDOW_H

#include <QMainWindow>

#include "slavethread.h"

QT_BEGIN_NAMESPACE

namespace Ui { class MainWindow; }

QT_END_NAMESPACE

class MainWindow : public QMainWindow

{

 Q_OBJECT

public:

 MainWindow(QWidget *parent = nullptr);

 ~MainWindow();

private slots:

 void on_pushButtonConnect_clicked();

 void ReadData(const QString &s);

 void processError(const QString &s);

 void processTimeout(const QString &s);

 void activateConnectButton();

private:

 int m_transactionCount = 0;

private:

 Ui::MainWindow *ui;

 SlaveThread m_thread;

};

#endif // MAINWINDOW_H

❖ Example: Read and Display Temperature

• Mainwindow.cpp

83

5. Lập trình giao tiếp với Arduino

#include "mainwindow.h"

#include "ui_mainwindow.h"

#include <QSerialPortInfo>

MainWindow::MainWindow(QWidget *parent)

 : QMainWindow(parent)

 , ui(new Ui::MainWindow)

{

 ui->setupUi(this);

 const auto infos = QSerialPortInfo::availablePorts();

 for (const QSerialPortInfo &info : infos)

 ui->comboBoxPort->addItem(info.portName());

 ui->comboBoxPort->setFocus();

 connect(&m_thread, &SlaveThread::request,

this,&MainWindow::ReadData);

 connect(&m_thread, &SlaveThread::error, this,

&MainWindow::processError);

 connect(&m_thread, &SlaveThread::timeout, this,

&MainWindow::processTimeout);

 connect(ui->comboBoxPort,

 QOverload<const

QString&>::of(&QComboBox::currentIndexChanged),

 this, &MainWindow::activateConnectButton);

 connect(ui->spinBoxWaitRequest, &QSpinBox::textChanged,

 this, &MainWindow::activateConnectButton);

 connect(ui->lineEditSendData, &QLineEdit::textChanged,

 this, &MainWindow::activateConnectButton);

}

MainWindow::~MainWindow()

{

 delete ui;

}

void MainWindow::on_pushButtonConnect_clicked()

{

 ui->pushButtonConnect->setEnabled(false);

 ui->textEditGetData->append(tr("Status: Running, connected to

port %1.")

 .arg(ui->comboBoxPort->currentText()));

 m_thread.startSlave(ui->comboBoxPort->currentText(),

 ui->comboBoxBaudRate-

>currentText().toUInt(),

 ui->spinBoxWaitRequest->value(),

 ui->lineEditSendData->text());

}

void MainWindow::activateConnectButton(){

 ui->pushButtonConnect->setEnabled(true);

}

void MainWindow::processError(const QString &s)

#include "mainwindow.h"

#include "ui_mainwindow.h"

#include <QSerialPortInfo>

MainWindow::MainWindow(QWidget *parent)

 : QMainWindow(parent)

 , ui(new Ui::MainWindow)

{

 ui->setupUi(this);

 const auto infos = QSerialPortInfo::availablePorts();

 for (const QSerialPortInfo &info : infos)

 ui->comboBoxPort->addItem(info.portName());

 ui->comboBoxPort->setFocus();

 connect(&m_thread, &SlaveThread::request,

this,&MainWindow::ReadData);

 connect(&m_thread, &SlaveThread::error, this,

&MainWindow::processError);

 connect(&m_thread, &SlaveThread::timeout, this,

&MainWindow::processTimeout);

 connect(ui->comboBoxPort,

 QOverload<const

QString&>::of(&QComboBox::currentIndexChanged),

 this, &MainWindow::activateConnectButton);

 connect(ui->spinBoxWaitRequest, &QSpinBox::textChanged,

 this, &MainWindow::activateConnectButton);

 connect(ui->lineEditSendData, &QLineEdit::textChanged,

 this, &MainWindow::activateConnectButton);

}

MainWindow::~MainWindow()

{

 delete ui;

}

void MainWindow::on_pushButtonConnect_clicked()

{

 ui->pushButtonConnect->setEnabled(false);

 ui->textEditGetData->append(tr("Status: Running, connected to

port %1.")

 .arg(ui->comboBoxPort->currentText()));

 m_thread.startSlave(ui->comboBoxPort->currentText(),

 ui->comboBoxBaudRate-

>currentText().toUInt(),

 ui->spinBoxWaitRequest->value(),

 ui->lineEditSendData->text());

}

void MainWindow::activateConnectButton(){

 ui->pushButtonConnect->setEnabled(true);

}

void MainWindow::processError(const QString &s)

❖ Example: Read and Display Temperature

• Mainwindow.cpp

84

5. Lập trình giao tiếp với Arduino

}

void MainWindow::processError(const QString &s)

{

 activateConnectButton();

 ui->textEditGetData->append(tr("Status: Not running, %1.").arg(s));

 ui->textEditGetData->append(tr("No traffic."));

}

void MainWindow::processTimeout(const QString &s)

{

 ui->textEditGetData->append(tr("Status: Running, %1.").arg(s));

 ui->textEditGetData->append(tr("No traffic."));

}

void MainWindow::ReadData(const QString &s)

{

 ui->textEditGetData->append(tr("Traffic, transaction #%1:"

 "\n-request: %2"

 "-response: %3")

 .arg(++m_transactionCount)

 .arg(s)

 .arg(ui->lineEditSendData->text()));

❖ Example: Read and Display Temperature

• Add slavethread class into project

85

5. Lập trình giao tiếp với Arduino

#endif // SLAVETHREAD_H

#ifndef SLAVETHREAD_H

#define SLAVETHREAD_H

#include <QMutex>

#include <QThread>

#include <QWaitCondition>

//! [0]

class SlaveThread : public QThread

{

 Q_OBJECT

public:

 explicit SlaveThread(QObject *parent = nullptr);

 ~SlaveThread();

 void startSlave(const QString &portName, uint32_t bd, int waitTimeout,

const QString &response);

signals:

 void request(const QString &s);

 void error(const QString &s);

 void timeout(const QString &s);

private:

 void run() override;

 QString m_portName;

 qint32 m_baudRate;

 QString m_response;

 int m_waitTimeout = 0;

 QMutex m_mutex;

 bool m_quit = false;

};

//! [0]

❖ Example: Read and Display Temperature

• Add slavethread class into project

86

5. Lập trình giao tiếp với Arduino

#include "slavethread.h"

#include <QSerialPort>

#include <QTime>

SlaveThread::SlaveThread(QObject *parent) :

 QThread(parent)

{

}

//! [0]

SlaveThread::~SlaveThread()

{

 m_mutex.lock();

 m_quit = true;

 m_mutex.unlock();

 wait();

}

//! [0]

//! [2] //! [3]

//! [1] //! [2]

void SlaveThread::startSlave(const QString &portName, uint32_t bd, int

waitTimeout, const QString &response)

{

 //! [1]

 const QMutexLocker locker(&m_mutex);

 m_portName = portName;

 /* BaudRate */

 switch (bd) {

 case 2400:

 m_baudRate = QSerialPort::Baud2400;

 break;

 case 4800:

 m_baudRate = QSerialPort::Baud4800;

 break;

 case 9600:

 m_baudRate = QSerialPort::Baud9600;

 break;

 case 19200:

 m_baudRate = QSerialPort::Baud19200;

 break;

 case 115200:

 m_baudRate = QSerialPort::Baud115200;

 break;

 }

 m_waitTimeout = waitTimeout;

 m_response = response;

 //! [3]

 if (!isRunning())

 start();

}

❖ Example: Read and Display Temperature

• Add slavethread class into project

87

5. Lập trình giao tiếp với Arduino

//! [4]

void SlaveThread::run()

{

 bool currentPortNameChanged = false;

 m_mutex.lock();

//! [4] //! [5]

 QString currentPortName;

 if (currentPortName != m_portName) {

 currentPortName = m_portName;

 currentPortNameChanged = true;

 }

 int currentWaitTimeout = m_waitTimeout;

 QString currentRespone = m_response;

 qint32 currentBaudRate = m_baudRate;

 m_mutex.unlock();

//! [5] //! [6]

 QSerialPort serial;

 while (!m_quit) {

//![6] //! [7]

 if (currentPortNameChanged) {

 serial.close();

 serial.setPortName(currentPortName);

 serial.setBaudRate(currentBaudRate);

 if (!serial.open(QIODevice::ReadWrite)) {

 emit error(tr("Can't open %1, error code %2")

 .arg(m_portName).arg(serial.error()));

 return;

 }

 }

 if (serial.waitForReadyRead(currentWaitTimeout)) {

//! [7] //! [8]

 // read request

 QByteArray requestData = serial.readAll();

 while (serial.waitForReadyRead(10))

 requestData += serial.readAll();

//! [8] //! [10]

 // write response

 const QByteArray responseData = currentRespone.toUtf8();

 serial.write(responseData);

 if (serial.waitForBytesWritten(m_waitTimeout)) {

 const QString request = QString::fromUtf8(requestData);

//! [12]

 emit this->request(request);

//! [10] //! [11] //! [12]

 } else {

 emit timeout(tr("Wait write response timeout %1")

 .arg(QTime::currentTime().toString()));

 }

//! [9] //! [11]

 } else {

 emit timeout(tr("Wait read request timeout %1")

 .arg(QTime::currentTime().toString()));

 }

//! [9] //! [13]

 m_mutex.lock();

 if (currentPortName != m_portName) {

 currentPortName = m_portName;

 currentPortNameChanged = true;

 } else {

 currentPortNameChanged = false;

 }

 currentBaudRate = m_baudRate;

 currentWaitTimeout = m_waitTimeout;

 currentRespone = m_response;

 m_mutex.unlock();

//! [4]

void SlaveThread::run()

{

 bool currentPortNameChanged = false;

 m_mutex.lock();

//! [4] //! [5]

 QString currentPortName;

 if (currentPortName != m_portName) {

 currentPortName = m_portName;

 currentPortNameChanged = true;

 }

 int currentWaitTimeout = m_waitTimeout;

 QString currentRespone = m_response;

 qint32 currentBaudRate = m_baudRate;

 m_mutex.unlock();

//! [5] //! [6]

 QSerialPort serial;

 while (!m_quit) {

//![6] //! [7]

 if (currentPortNameChanged) {

 serial.close();

 serial.setPortName(currentPortName);

 serial.setBaudRate(currentBaudRate);

 if (!serial.open(QIODevice::ReadWrite)) {

 emit error(tr("Can't open %1, error code %2")

 .arg(m_portName).arg(serial.error()));

 return;

 }

 }

 if (serial.waitForReadyRead(currentWaitTimeout)) {

//! [7] //! [8]

 // read request

 QByteArray requestData = serial.readAll();

 while (serial.waitForReadyRead(10))

 requestData += serial.readAll();

//! [8] //! [10]

 // write response

 const QByteArray responseData = currentRespone.toUtf8();

 serial.write(responseData);

 if (serial.waitForBytesWritten(m_waitTimeout)) {

 const QString request = QString::fromUtf8(requestData);

//! [12]

 emit this->request(request);

//! [10] //! [11] //! [12]

 } else {

 emit timeout(tr("Wait write response timeout %1")

 .arg(QTime::currentTime().toString()));

 }

//! [9] //! [11]

 } else {

 emit timeout(tr("Wait read request timeout %1")

 .arg(QTime::currentTime().toString()));

 }

//! [9] //! [13]

 m_mutex.lock();

 if (currentPortName != m_portName) {

 currentPortName = m_portName;

 currentPortNameChanged = true;

 } else {

 currentPortNameChanged = false;

 }

 currentBaudRate = m_baudRate;

 currentWaitTimeout = m_waitTimeout;

 currentRespone = m_response;

 m_mutex.unlock();

❖ Example: Read and Display Temperature

• Giao diện

88

5. Lập trình giao tiếp với Arduino

❖ Example: Read and Display Temperature

• Arduino Coding

89

5. Lập trình giao tiếp với Arduino

90

❖ Example: Read and Display Temperature

• Arduino Coding

5. Lập trình giao tiếp với Arduino

91

Chapter V. Hardware Interface Programming

❖ 1. Giới thiệu

❖ 2. Các chuẩn giao tiếp và giao thức truyền thông công nghiệp

❖ 3. Truyền thông nối tiếp với Qt

❖ 4. Đa luồng trong Qt

❖ 5. Lập trình giao tiếp với Arduino

❖ 6. Lập trình giao tiếp với camera

6. Lập trình giao tiếp với camera

92

❖ Machine Vision Framework

93

❖ Machine Vision System

6. Lập trình giao tiếp với camera

94

❖ Machine Vision Software

• Machine vision software allows engineers and developers to design, deploy and manage

vision applications.

• Vision applications are used by machines to extract and ingest data from visual imagery.

Kinds of data available are geometric patterns (or other kinds of pattern recognition),

object location, heat detection and mapping, measurements and alignments, or blob

analysis.

https://www.trustradius.com/machine-vision

6. Lập trình giao tiếp với camera

95

❖ Machine Vision Software

Features of Machine Vision Software:

• Suite of tools for building 2D and 3D vision apps

• Support for multiple image types (e.g. analog, digital, color, monochrome, scans, etc.)

• Integratable with third-party smart cameras

• Blob detection & analysis

• Image processing, integration with analytics suites

https://www.trustradius.com/machine-vision

6. Lập trình giao tiếp với camera

96

❖ Machine Vision Software: Example

Features of Machine Vision Software:

• Auto ID Tools: Decoding all standard linear barcodes, Data Matrix, and other symbols,
Optical Character Recognition (OCR) and Verification (OCV), etc.

• Image Processing Tools: Image arithmetic, image rotation and warping, binary and
grayscale morphology, edge enhancement, other image filtering, etc.

• Image Analysis Tools: Flaw detection, histogram analysis, blob analysis, template and
pattern recognition, object location and orientation detections, etc.

• Calibrated Dimensional Measurements: Variety of pre-configured measurements such as
line intersection, point-to-point distance, point-to-line normal, etc.

https://www.redlinesolutions.com/index.php/solutions/machine-vision/machine-vision-software

6. Lập trình giao tiếp với camera

97

❖ Machine Vision Software: Example

Features of Machine Vision Software:

• Intellifind Tool: Geometric pattern match tool for robust pattern location and pattern
recognition in noisy images; includes scale measurement.

• Color Support: Color imaging, color visualization and other color tools allow color
checking and identification applications. Color-based dimensional gauging applications
are also possible.

• Application Specific and Custom Tools: User-defined expressions and math, custom
scripted vision processing tools, etc.

https://www.redlinesolutions.com/index.php/solutions/machine-vision/machine-vision-software

6. Lập trình giao tiếp với camera

98

❖ Real-Time Image Processing

Image
acquisition

Preprocessing
Image

segmentation
Image

Representation

Image
Recognition &
Interpretation

Knowledge Base

The steps in image processing

6. Lập trình giao tiếp với camera

99

❖ Real-Time Image Processing

• Preprocessing

➢ Noise Removal

➢ Image Enhancement

➢ …

6. Lập trình giao tiếp với camera

100

❖ Real-Time Image Processing

• Segmentation

➢ Line Detection

➢ Edge Detection

➢ Thresholding

➢ Watershed

➢ Color Detection

➢ …

6. Lập trình giao tiếp với camera

101

❖ Real-Time Image Processing

• Recognition and Localization

➢ Shape Detection

➢ Template Matching

➢ Feature Matching

➢ Deep Learning

➢ …

6. Lập trình giao tiếp với camera

102

❖ Real-Time Image Processing

• Camera Calibration

➢ 2-D and 3-D Object Measurement

➢ Robot-Camera Calibration

➢ …

6. Lập trình giao tiếp với camera

103

❖ Camera Connection: Using Qthread

6. Lập trình giao tiếp với camera

 QT += core gui multimedia network concurrent

greaterThan(QT_MAJOR_VERSION, 4): QT += widgets printsupport

 win32:CONFIG(release, debug|release): LIBS += -LD:/DEV-LIB/opencv-

4.1.0/build/x64/vc15/lib/ -lopencv_world410

else:win32:CONFIG(debug, debug|release): LIBS += -LD:/DEV-

LIB/opencv-4.1.0/build/x64/vc15/lib/ -lopencv_world410d

INCLUDEPATH += D:/DEV-LIB/opencv-4.1.0/build/include

DEPENDPATH += D:/DEV-LIB/opencv-4.1.0/build/include

104

❖ Camera Connection: Using Qthread

6. Lập trình giao tiếp với camera

105

❖ Camera Connection: Using Qthread

6. Lập trình giao tiếp với camera

Tên Kiểu Nhãn hiển thị Mô tả / Chức năng

comboBoxCamera QComboBox

 ComboBox hiển thị các máy ảnh kết

nối với máy tính mà chương trình phát

hiện được

label_2 QLabel Chọn Camera: Hiển thị hướng dẫn chọn máy ảnh

pushButtonOpenCamera QPushButton
Mở Camera Nút mở máy ảnh được lựa chọn trong

comboBoxCamera

pushButtonStart QPushButton Start Nút để bắt đầu chương trình xử lý ảnh

textEdit QTextEdit Hộp văn bản với nhật ký ứng dụng

imageView QGraphicsView
 Hiển thị hình ảnh thu được từ máy ảnh

hoặc hình ảnh đã được xử lý

menubar QMenuBar Thanh menu

menu_File QMenu File Menu file

action_Open_Camera QAction Open Camera Nút mở máy ảnh trên menu file

action_Calculate_FPS QAction
Calculate FPS Nút tính tốc độ khung hình máy ảnh

trên menu file

actionE_xit QAction Exit Nút thoát chương trình trên menu file

statusbar QStatusBar Thanh trạng thái

106

❖ Camera Connection: Using Qthread

▪ Mainwindow.h

6. Lập trình giao tiếp với camera

107

❖ Camera Connection: Using Qthread

▪ Mainwindow.cpp

6. Lập trình giao tiếp với camera

108

❖ Camera Connection: Using Qthread

▪ Mainwindow.cpp

6. Lập trình giao tiếp với camera

109

❖ Camera Connection: Using Qthread

▪ Mainwindow.cpp

6. Lập trình giao tiếp với camera

110

❖ Camera Connection: Using Qthread

▪ Mainwindow.cpp

6. Lập trình giao tiếp với camera

111

❖ Camera Connection: Using Qthread

▪ Mainwindow.cpp

6. Lập trình giao tiếp với camera

112

❖ Camera Connection: Using Qthread

▪ capture_thread.h

6. Lập trình giao tiếp với camera

113

❖ Camera Connection: Using Qthread

▪ capture_thread.h

6. Lập trình giao tiếp với camera

114

❖ Camera Connection: Using Qthread

▪ capture_thread.h

6. Lập trình giao tiếp với camera

115

❖ Camera Connection: Using Qthread

▪ capture_thread.cpp

6. Lập trình giao tiếp với camera

116

❖ Camera Connection: Using Qthread

▪ capture_thread.cpp

6. Lập trình giao tiếp với camera

117

❖ Camera Connection: Using Qthread

▪ capture_thread.cpp

6. Lập trình giao tiếp với camera

118

❖ Camera Connection: Using Qthread

▪ capture_thread.cpp

6. Lập trình giao tiếp với camera

119

❖ Camera Connection: Using Qthread

▪ capture_thread.cpp

6. Lập trình giao tiếp với camera

120

❖ Camera Connection: Using Qthread

▪ capture_thread.cpp

6. Lập trình giao tiếp với camera

	Chapter 0. Introduction
	Chapter I. Basics and data management of C++
	Chapter II. Modular programming in C++
	Chapter III. Object-oriented programming in C++
	Chapter IV. Graphical User Interface in C++ CLI
	Chapter IV. Graphical User Interface Qt
	Chapter V. Hardware Interface Programming C++ CLI
	Chapter V. Hardware Interface Programming Qt

